Nur Izzi Md. Yusoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9311894/publications.pdf

Version: 2024-02-01

99 2,401 28
papers citations h-index

99

docs citations

h-index g-index

99 1461
times ranked citing authors

233125

45

99 all docs

#	Article	IF	CITATIONS
1	The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Construction and Building Materials, 2014, 72, 139-147.	3.2	204
2	Modelling the linear viscoelastic rheological properties of bituminous binders. Construction and Building Materials, 2011, 25, 2171-2189.	3.2	158
3	Modelling the rheological properties of bituminous binders using mathematical equations. Construction and Building Materials, 2013, 40, 174-188.	3.2	113
4	Modelling the rheological properties of bituminous binders using the 2S2P1D Model. Construction and Building Materials, 2013, 38, 395-406.	3.2	110
5	Evaluation of pavement life cycle cost analysis: Review and analysis. International Journal of Pavement Research and Technology, 2016, 9, 241-254.	1.3	98
6	Physical and rheological properties of epoxidized natural rubber modified bitumens. Construction and Building Materials, 2014, 63, 242-248.	3.2	73
7	Physical and Rheological Characteristics of Polymer Modified Bitumen with Nanosilica Particles. Arabian Journal for Science and Engineering, 2016, 41, 1521-1530.	1.1	59
8	Physicochemical and thermal analyses of polyurethane modified bitumen incorporated with Cecabase and Rediset: Optimization using response surface methodology. Fuel, 2019, 254, 115662.	3.4	58
9	Integrated fuzzy analytic hierarchy process and VIKOR method in the prioritization of pavement maintenance activities. International Journal of Pavement Research and Technology, 2016, 9, 112-120.	1.3	57
10	Effects of moisture damage on asphalt mixtures. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7, 600-628.	2.0	56
11	Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives. Construction and Building Materials, 2016, 112, 232-240.	3.2	54
12	High temperature characteristics of warm mix asphalt mixtures with nanoclay and chemical warm mix asphalt modified binders. Journal of Cleaner Production, 2016, 122, 326-334.	4.6	49
13	Fundamental and rheological properties of oil palm fruit ash modified bitumen. Construction and Building Materials, 2013, 49, 702-711.	3.2	48
14	Investigation into hot-mix asphalt moisture-induced damage under tropical climatic conditions. Construction and Building Materials, 2014, 50, 567-576.	3.2	47
15	Rheological characteristics of unaged and aged epoxidised natural rubber modified asphalt. Construction and Building Materials, 2016, 102, 190-199.	3.2	47
16	Performance evaluation of Al ₂ O ₃ nanoparticle-modified asphalt binder. Road Materials and Pavement Design, 2017, 18, 1251-1268.	2.0	46
17	A review of the feasibility of using crumb rubber derived from end-of-life tire as asphalt binder modifier. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2020, 23, 203-216.	0.4	42
18	Determining the water damage resistance of nano-clay modified bitumens using the indirect tensile strength and surface free energy methods. Construction and Building Materials, 2018, 167, 391-402.	3.2	39

#	Article	IF	CITATIONS
19	Engineering characteristics of nanosilica/polymer-modified bitumen and predicting their rheological properties using multilayer perceptron neural network model. Construction and Building Materials, 2019, 204, 781-799.	3.2	39
20	Comparative study on using static and dynamic finite element models to develop FWD measurement on flexible pavement structures. Construction and Building Materials, 2018, 176, 583-592.	3.2	38
21	Investigation on physical, thermal and chemical properties of palm kernel oil polyol bio-based binder as a replacement for bituminous binder. Construction and Building Materials, 2019, 204, 122-131.	3.2	38
22	Sustainable Development Factors in Pavement Life-Cycle: Highway/Airport Review. Sustainability, 2016, 8, 248.	1.6	37
23	Rheological Evaluation of Asphalt Cements Modified with ASA Polymer and Al2O3 Nanoparticles. Procedia Engineering, 2016, 143, 1276-1284.	1.2	36
24	Effects of mixture design variables on rubber–bitumen interaction: properties of dry mixed rubberized asphalt mixture. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	36
25	Microstructural characterisation of dry mixed rubberised asphalt mixtures. Construction and Building Materials, 2015, 82, 173-183.	3.2	32
26	Asphalt Pavement Temperature Prediction Models: A Review. Applied Sciences (Switzerland), 2021, 11, 3794.	1.3	31
27	Physicochemical, rheological and microstructural properties of Nano-Silica modified Bio-Asphalt. Construction and Building Materials, 2021, 297, 123772.	3.2	30
28	Physical and rheological properties of acrylate–styrene–acrylonitrile modified asphalt cement. Construction and Building Materials, 2015, 93, 326-334.	3.2	28
29	Effects of RH-WMA additive on rheological properties of high amount reclaimed asphalt binders. Construction and Building Materials, 2016, 114, 665-672.	3.2	28
30	Engineering and leaching properties of asphalt binders modified with polyurethane and Cecabase additives for warm-mix asphalt application. Construction and Building Materials, 2020, 238, 117699.	3.2	28
31	Utilisation of Waste-Based Geopolymer in Asphalt Pavement Modification and Construction—A Review. Sustainability, 2021, 13, 3330.	1.6	28
32	The effect of lift thickness on permeability and the time available for compaction of hot mix asphalt pavement under tropical climate condition. Construction and Building Materials, 2013, 48, 315-324.	3.2	27
33	Laboratory evaluation on the characteristics and pollutant emissions of nanoclay and chemical warm mix asphalt modified binders. Construction and Building Materials, 2016, 113, 488-497.	3.2	27
34	Emerging Technologies of Deep Learning Models Development for Pavement Temperature Prediction. IEEE Access, 2021, 9, 23840-23849.	2.6	26
35	Application of the Maximum Undamaged Defect Size (d max) Concept in Fiber-Reinforced Concrete Pavements. Arabian Journal for Science and Engineering, 2014, 39, 8499-8506.	1.1	21
36	Determining the effects of aging on halloysite nano-tube modified binders through the pull-off test method. Construction and Building Materials, 2016, 126, 245-252.	3.2	19

#	Article	IF	CITATIONS
37	Investigation of the chemical, strength, adhesion and morphological properties of fly ash based geopolymer-modified bitumen. Construction and Building Materials, 2020, 255, 119364.	3.2	19
38	A Review on The Exploration of Nanomaterials Application in Pavement Engineering. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.3	18
39	Investigation of the relationship between fluidity and adhesion strength of unmodified and modified bitumens using the pull-off test method. Construction and Building Materials, 2016, 122, 140-148.	3.2	18
40	Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt. PLoS ONE, 2017, 12, e0171648.	1.1	18
41	Irradiated polyethylene terephthalate and fly ash based grouts for semi-flexible pavement: design and optimisation using response surface methodology. International Journal of Pavement Engineering, 2022, 23, 2515-2530.	2.2	18
42	Effects of Rediset on the adhesion, stripping, thermal and surface morphologies of PG76 binder. Construction and Building Materials, 2020, 241, 117923.	3.2	18
43	Properties of cup lump rubber modified asphalt binder. Road Materials and Pavement Design, 2021, 22, 1329-1349.	2.0	18
44	Influence of diatomite filler on rheological properties of porous asphalt mastic. International Journal of Pavement Engineering, 2020, 21, 428-436.	2.2	17
45	Effects of Waste Frying Oil and Crumb Rubber on the Characteristics of a Reclaimed Asphalt Pavement Binder. Materials, 2021, 14, 3482.	1.3	17
46	Utilisation of Steel Slag as an Aggregate Replacement in Porous Asphalt Mixtures. Jurnal Teknologi (Sciences and Engineering), 2014, 69, .	0.3	16
47	Warm Mix Asphalt Technology: A Review. Jurnal Teknologi (Sciences and Engineering), 2014, 71, .	0.3	16
48	Evaluation of the high-temperature rheological performance of tire pyrolysis oil-modified bio-asphalt. International Journal of Pavement Engineering, 2022, 23, 4007-4022.	2.2	15
49	Development of a Hybrid Machine Learning Model for Asphalt Pavement Temperature Prediction. IEEE Access, 2021, 9, 158041-158056.	2.6	14
50	Rheological Characteristics of Epoxidized Natural Rubber Modified Bitumen. Applied Mechanics and Materials, 0, 505-506, 174-179.	0.2	13
51	Effect of various filler types on the properties of porous asphalt mixture. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012036.	0.3	13
52	Mechanical Performance of Reclaimed Asphalt Pavement Modified with Waste Frying Oil and Crumb Rubber. Materials, 2021, 14, 2781.	1.3	13
53	A REVIEW OF THE USE OF RECLAIMED ASPHALT PAVEMENT FOR ROAD PAVING APPLICATIONS. Jurnal Teknologi (Sciences and Engineering), 2020, 82, .	0.3	12
54	Integrated finite element and artificial neural network methods for constructing asphalt concrete dynamic modulus master curve using deflection time-history data. Construction and Building Materials, 2020, 257, 119549.	3.2	12

#	Article	IF	Citations
55	Engineering properties of crumb rubber modified dense-graded asphalt mixtures using dry process. IOP Conference Series: Earth and Environmental Science, 0, 220, 012009.	0.2	11
56	The Effect of Ageing on Chemical and Strength Characteristics of Nanoclay-Modified Bitumen and Asphalt Mixture. Applied Sciences (Switzerland), 2021, 11, 6709.	1.3	11
57	The effects of polymer modified asphalt binder incorporating with chemical warm mix additive towards water quality degradation. Journal of Cleaner Production, 2021, 279, 123698.	4.6	10
58	Chemical and physical properties of poly (lactic) acid modified bitumen. Ain Shams Engineering Journal, 2021, 12, 2631-2642.	3.5	10
59	Analysis of BIM-Based Digitising of Green Building Index (GBI): Assessment Method. Buildings, 2022, 12, 429.	1.4	10
60	Encouraging Sustainable Use of RAP Materials for Pavement Construction in Oman: A Review. Recycling, 2022, 7, 35.	2.3	10
61	Measurements of the Stiffness and Thickness of the Pavement Asphalt Layer Using the Enhanced Resonance Search Method. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	9
62	The Combination of a Fuzzy Analytical Hierarchy Process and the Taguchi Method to Evaluate the Malaysian Users' Willingness to Pay for Public Transportation. Symmetry, 2016, 8, 90.	1.1	9
63	Stiffening Effect of Fillers Based on Rheology and Micromechanics Models. Applied Sciences (Switzerland), 2021, 11, 6521.	1.3	9
64	Comparative Study of Utilising Neural Network and Response Surface Methodology for Flexible Pavement Maintenance Treatments. Civil Engineering Journal (Iran), 2020, 6, 1895-1905.	1.2	8
65	A Comparative Study of Phase Angle Predictive Equations Using Bituminous Binder Data. Arabian Journal for Science and Engineering, 2012, 37, 1571-1583.	1.1	7
66	THE USE OF MIXED WASTE RECYCLED PLASTIC AND GLASS AS AN AGGREGATE REPLACEMENT IN ASPHALT MIXTURES. Jurnal Teknologi (Sciences and Engineering), 2017, 80, .	0.3	7
67	Low-Cost Pavement Management System for Developing Countries. Sustainability, 2021, 13, 5941.	1.6	7
68	Perspective of Life-Cycle Cost Analysis and Risk Assessment for Airport Pavement in Delaying Preventive Maintenance. Sustainability, 2022, 14, 2905.	1.6	7
69	CHARACTERIZATION OF THE PERFORMANCE OF ALUMINUM OXIDE NANOPARTICLES MODIFIED ASPHALT BINDER. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	6
70	Evaluation of Moisture and Ageing Effects on Calcium Carbonite Nanoparticles Modified Asphalt Mixtures. International Journal of Engineering Research in Africa, 0, 34, 40-47.	0.7	6
71	AN OVERVIEW OF MOISTURE DAMAGE PERFORMANCE TESTS ON ASPHALT MIXTURES. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	5
72	Integrated time-frequency wavelet analysis and impulse response filtering on SASW test for rigid pavement stiffness prediction. Ain Shams Engineering Journal, 2021, 12, 367-380.	3.5	5

#	Article	IF	CITATIONS
73	An Educational Web-Based Expert System for Novice Highway Technology in Flexible Pavement Maintenance. Complexity, 2021, 2021, 1-17.	0.9	5
74	Laboratory Evaluation on Steel Slag as Aggregate Replacement in Stone Mastic Asphalt Mixtures. Jurnal Teknologi (Sciences and Engineering), 2013, 65, .	0.3	4
7 5	THE EFFECT OF PRESERVATION MAINTENANCE ACTIVITIES IN ASPHALT CONCRETE PAVEMENT SUSTAINABILITY. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	4
76	PHYSICAL PROPERTIES AND STORAGE STABILITY OF GEOPOLYMER MODIFIED ASPHALT BINDER. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	4
77	Aggregate Degradation Characteristics of Stone Mastic Asphalt Mixtures. Jurnal Teknologi (Sciences) Tj ETQq1 1 (0.784314	rgBT /Overl
78	AN EXPERT SYSTEM TO REMEDY CONCRETE IMPERFECTIONS AND THEIR EFFECTS ON RIGID PAVEMENTS. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.3	4
79	Measurements of the elastic modulus of pavement subgrade layers using the SASW and FWD test methods. Baltic Journal of Road and Bridge Engineering, 2015, 10, 174-181.	0.4	4
80	Physical, Chemical and Thermal Properties of Palm Oil Boiler Ash/Rediset-Modified Asphalt Binder. Sustainability, 2022, 14, 3016.	1.6	4
81	EVALUATING THE COOLING RATE OF HOT MIX ASPHALT IN TROPICAL CLIMATE. Jurnal Teknologi (Sciences) Tj ETÇ	Qq].j 0.78	34314 rgBT
82	DETERMINING THE EFFECTS OF RH-WMA ON THE ENGINEERING PROPERTIES OF BITUMEN. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	0.3	3
83	Effect of Crumb Rubber, Epolene (EE-2), and Date Palm Ash as Modifiers on the Performance of Binders and Mixtures: A Sustainable Approach. Sustainability, 2019, 11, 6484.	1.6	3
84	Effect of input source energy and measurement of flexible pavement deflection using the SASW method. International Journal of Pavement Engineering, 2019, 20, 382-392.	2.2	3
85	THE IMPACT OF ECONOMIC ANALYSIS METHODS ON PROJECT DECISION-MAKING IN AIRPORT PAVEMENT MANAGEMENT. Jurnal Teknologi (Sciences and Engineering), 2021, 83, 11-19.	0.3	3
86	A Comparative Study of Probabilistic and Deterministic Methods for the Direct and Indirect Costs in Life-Cycle Cost Analysis for Airport Pavements. Sustainability, 2022, 14, 3819.	1.6	3
87	EXPLORATORY STUDY ON AIRBAG SUITABILITY FOR LOW ENGINE CAPACITY MOTORCYCLES. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	2
88	PREDICTING THE RHEOLOGICAL PROPERTIES OF BITUMEN-FILLER MASTIC USING ARTIFICIAL NEURAL NETWORK METHODS. Jurnal Teknologi (Sciences and Engineering), 2017, 80, .	0.3	2
89	Wavelet-Spectrogram Analysis of Surface Wave Technique for In Situ Pavement Stiffness Measurement. Journal of Materials in Civil Engineering, 2018, 30, 04018304.	1.3	2
90	PENGGUNAAN CAMPURAN PLASTIK DAN KACA KITAR SEMULA SEBAGAI AGREGAT GANTIAN DALAM CAMPURAN BERASFALT. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.3	1

#	Article	IF	CITATIONS
91	A COMPARATIVE STUDY OF MONITORING METHODS IN SUSTAINABLE PAVEMENT SYSTEM DEVELOPMENT. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	0.3	1
92	Higher Modes and Superposed Mode Behavior for Flexible Pavement Layer System. IOP Conference Series: Materials Science and Engineering, 2020, 811, 012047.	0.3	1
93	Landslide on a Deeply Landfilled Slope: A Case Study of Tembalang, Indonesia. Jurnal Teknologi (Sciences and Engineering), 2014, 70, .	0.3	1
94	DETERMINATION OF DEFLECTION BASIN USING PAVEMENT MODELLING COMPUTER PROGRAMS AND FINITE ELEMENT METHOD. Jurnal Teknologi (Sciences and Engineering), 2020, 82, .	0.3	1
95	Ramalan Cirian Reologi Campuran Berasfalt Menggunakan Rangkaian Saraf Tiruan. Jurnal Teknologi (Sciences and Engineering), 2013, 65, .	0.3	0
96	Improvement in Properties of Expansive Clay by Stabilizing with Buton Rock Asphalt. Jurnal Teknologi (Sciences and Engineering), 2015, 73, .	0.3	0
97	EFFECT OF RH-WMA ADDITIVE ON ENGINEERING PROPERTIES OF BITUMEN PG-76/KESAN BAHAN TAMBAH RH-WMA KE ATAS SIFAT- SIFAT KEJURUTERAAN BITUMEN PG-76. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.78	43 0.4 rgBT	/ O verlock 1
98	Microstructure and leaching characteristics of steel slag and CRT glass. IOP Conference Series: Materials Science and Engineering, 2020, 785, 012034.	0.3	0
99	Statistical Overview of Factors Influencing Traffic Accidents Severity On El-Brega Coastal Freeway in Libya. Open Transportation Journal, 2019, 13, 154-161.	0.4	0