MiloÅ; JaneÄek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9311177/publications.pdf Version: 2024-02-01

Μυσά: Ιληράεκ

#	Article	IF	CITATIONS
1	Ultrasonic Treatment of Ti-5Al-0.5ÂV Alloy Subjected to Equal-Channel Angular Pressing. Metals and Materials International, 2022, 28, 1257-1263.	1.8	4
2	Observation of the omega phase particles in Ti15Mo alloy by electron microscopy. Materials Letters, 2022, 309, 131376.	1.3	9
3	Thermal Stability of Microstructure of High-Entropy Alloys Based on Refractory Metals Hf, Nb, Ta, Ti, V, and Zr. Metals, 2022, 12, 394.	1.0	3
4	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	4.1	215
5	Achieving high strength and low elastic modulus in interstitial biomedical Ti–Nb–Zr–O alloys through compositional optimization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142833.	2.6	19
6	Manufacturing of biomedical Ti alloys with controlled oxygen content by blended elemental powder metallurgy. Journal of Alloys and Compounds, 2022, 905, 164259.	2.8	6
7	Phase transformations in a heterogeneous Ti-xNb-7Zr-0.8O alloy prepared by a field-assisted sintering technique. Materials and Design, 2021, 198, 109308.	3.3	10
8	Preparation of bulk Ti 15Mo alloy using cryogenic milling and spark plasma sintering. Materials Characterization, 2021, 171, 110762.	1.9	9
9	Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review. Metals, 2021, 11, 76.	1.0	20
10	In-situ investigation of phase transformations in ultra-fine grained Ti15Mo alloy. Journal of Alloys and Compounds, 2021, 867, 159027.	2.8	11
11	Phase Transformations upon Ageing in Ti15Mo Alloy Subjected to Two Different Deformation Methods. Metals, 2021, 11, 1230.	1.0	4
12	Novel Î \pm + Î ² Zr Alloys with Enhanced Strength. Materials, 2021, 14, 418.	1.3	2
13	Interface of a Al6061/Ti Composite Prepared by Field Assisted Sintering Technique. Metals, 2021, 11, 73.	1.0	1
14	Microstructure Evolution in Cu–0.5 wt% Zr Alloy Processed by a Novel Severe Plastic Deformation Technique of Rotational Constrained Bending. Metals, 2021, 11, 63.	1.0	2
15	Influence of temperature of ECAP processing on the microstructure and microhardness of as-cast AX41 alloy. Journal of Materials Science, 2020, 55, 3118-3129.	1.7	11
16	Manufacturing of fine-grained titanium by cryogenic milling and spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138783.	2.6	12
17	Physical and Technical Foundations of the Use of Alternating Free Bending for Producing Long-length Semi-products from Metals and Alloys with Improved Mechanical Properties. Metals, 2020, 10, 879.	1.0	4
18	Microstructure and texture in cryomilled and spark plasma sintered Ti Grade 2. MATEC Web of Conferences, 2020, 321, 12030.	0.1	0

#	Article	IF	CITATIONS
19	Evolution of α phase in metastable β titanium alloys studied by small-angle X-ray scattering. MATEC Web of Conferences, 2020, 321, 12039.	0.1	0
20	Kinetics of the changes in the mechanical properties of the samples from the Cu-0.5Cr copper alloy and GradeÂ4ÂTi during alternating bending. Letters on Materials, 2020, 10, 227-231.	0.2	0
21	Anomalous X-ray diffraction from ï‰ nanoparticles in β-Ti(Mo) single crystals. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, 718-729.	0.0	1
22	Composition of ω-Phase Particles in Ti(Mo) Alloys Studied by Anomalous X-ray Diffraction. Crystals, 2019, 9, 440.	1.0	3
23	<i>In situ</i> detection of stability limit of ï‰ phase in Ti–15Mo alloy during heating. Journal of Applied Crystallography, 2019, 52, 1061-1071.	1.9	7
24	Elastic constants of \hat{I}^2 -Ti15Mo. Journal of Alloys and Compounds, 2019, 792, 960-967.	2.8	20
25	Microstructure and texture formation in commercially pure titanium prepared by cryogenic milling and spark plasma sintering. Materials Characterization, 2019, 151, 1-5.	1.9	12
26	Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure. Journal of Alloys and Compounds, 2019, 788, 881-890.	2.8	13
27	Transformation Pathway upon Heating of Metastable β Titanium Alloy Ti-15Mo Investigated by Neutron Diffraction. Materials, 2019, 12, 3570.	1.3	11
28	Effect of the High-Pressure Torsion (HPT) and Subsequent Isothermal Annealing on the Phase Transformation in Biomedical Ti15Mo Alloy. Metals, 2019, 9, 1194.	1.0	14
29	Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP. Journal of Materials Science, 2019, 54, 3469-3484.	1.7	23
30	Characteristics of the stress-strain state and structural changes in axisymmetric samples under sign-alternating deformation by free and constrained bending. Letters on Materials, 2019, 9, 494-498.	0.2	5
31	The Effect of Hot Working on the Mechanical Properties of High Strength Biomedical Ti-Nb-Ta-Zr-O Alloy. Materials, 2019, 12, 4233.	1.3	10
32	Elasticity and internal friction of magnesium alloys at room and elevated temperatures. Journal of Materials Science, 2018, 53, 8545-8553.	1.7	9
33	Mechanical properties of ultrafine-grained AX41 magnesium alloy at room and elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 438-445.	2.6	18
34	Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo. Journal of Materials Science, 2018, 53, 837-845.	1.7	35
35	Inhomogeneous Precipitation of the α-Phase in Ti15Mo Alloy Deformed by ECAP. Materials Science Forum, 2018, 941, 1183-1188.	0.3	2
36	Manufacturing of Biomedical Ti-Based Alloys with High Oxygen Content and Various Amount of Beta-Stabilizing Elements. Materials Science Forum, 2018, 941, 2471-2476.	0.3	3

#	Article	IF	CITATIONS
37	Evaluation of anisotropic small-angle neutron scattering data from metastable β-Ti alloy. Philosophical Magazine, 2018, 98, 3086-3108.	0.7	3
38	Cold Swaging and Recrystallization Annealing of Ti-Nb-Ta-Zr-O Alloy - Microstructure, Texture and Microhardness Evolution. Materials Science Forum, 2018, 941, 1132-1136.	0.3	2
39	Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. Journal of Alloys and Compounds, 2018, 768, 924-937.	2.8	48
40	Structural characterization of semi-heusler/light metal composites prepared by spark plasma sintering. Scientific Reports, 2018, 8, 11133.	1.6	3
41	Cryogenic Milling of Titanium Powder. Metals, 2018, 8, 31.	1.0	10
42	High Temperature Mechanical Properties and Microstructure of Ti-Nb-Zr-Ta-O Biomedical Alloy. Acta Physica Polonica A, 2018, 134, 636-639.	0.2	2
43	Heterogeneous Precipitation of the α-Phase in Ti15Mo Alloy Subjected to High Pressure Torsion. Acta Physica Polonica A, 2018, 134, 790-793.	0.2	6
44	Influence of grain size and precipitation hardening on high cycle fatigue performance of CuNiSi alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 524-533.	2.6	16
45	Influence of equal channel angular pressing temperature on texture, microstructure and mechanical properties of extruded AX41 magnesium. Journal of Alloys and Compounds, 2017, 705, 273-282.	2.8	48
46	Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 329-336.	1.5	75
47	Mechanical and magnetic properties of semi-Heusler/light-metal composites consolidated by spark plasma sintering. Materials and Design, 2017, 126, 351-357.	3.3	6
48	Effects of microstructure on mechanical properties of CuNiSi alloys. Journal of Alloys and Compounds, 2017, 696, 201-212.	2.8	63
49	Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy. Materials Characterization, 2017, 123, 282-293.	1.9	63
50	Microhardness and microstructure evolution of ultra-fine grained Ti-15Mo and TIMETAL LCB alloys prepared by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 220-228.	2.6	26
51	Continuous measurement of m-parameter for analyzing plastic instability in a superplastic ultra-fine grained magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 110-114.	2.6	8
52	Exceptional mechanical properties of ultra-fine grain Mg-4Y-3RE alloy processed by ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 193-198.	2.6	77
53	Ageing response of sub-transus heat treated Ti–6.8Mo–4.5Fe–1.5Al alloy. Journal of Alloys and Compounds, 2017, 724, 373-380.	2.8	16
54	Microstructure development of ultra fine grained Mg-22 wt%Gd alloy prepared by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 181-191.	2.6	16

#	Article	IF	CITATIONS
55	Cryomilled and spark plasma sintered titanium: the evolution of microstructure. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012023.	0.3	3
56	Thermal Stability of Ultra-Fine Grained Microstructure in Mg and Ti Alloys. , 2017, , .		2
57	Mechanical properties and microstructure of magnesium alloy Mg22Gd processed by severe plastic deformation. Advanced Materials Letters, 2017, 8, 897-904.	0.3	2
58	Characterization of Phase Transitions Occurring in Solution Treated Ti-15Mo during Heating by Thermal Expansion and Electrical Resistance Measurements. Materials Science Forum, 2016, 879, 2318-2323.	0.3	3
59	Evolution of Microstructure and Microhardness in Ti-15Mo β-Ti Alloy Prepared by High Pressure Torsion. Materials Science Forum, 2016, 879, 2555-2560.	0.3	5
60	The effect of athermal and isothermal ω phase particles on elasticity of β-Ti single crystals. Acta Materialia, 2016, 110, 185-191.	3.8	46
61	Effects of severe plastic deformation on transformation kinetics of precipitates in CuNi3Si1Mg. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 156-164.	2.6	36
62	Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Materials Science and Engineering C, 2016, 60, 230-238.	3.8	143
63	Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP. Materials Characterization, 2016, 112, 1-10.	1.9	47
64	Structural characterization of ultrafine-grained interstitial-free steel prepared by severe plastic deformation. Acta Materialia, 2016, 105, 258-272.	3.8	70
65	Thermal stability of ultrafine-grained commercial purity Ti and Ti–6Al–7Nb alloy investigated by electrical resistance, microhardness and scanning electron microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 886-892.	2.6	24
66	Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion. Scientific Reports, 2015, 5, 9660.	1.6	80
67	An ultrasonic internal friction study of ultrafine-grained AZ31 magnesium alloy. Journal of Materials Science, 2015, 50, 808-818 Growth kinetics of <mmi:math <="" altimg="si18.gif" overflow="scroll" td=""><td>1.7</td><td>13</td></mmi:math>	1.7	13
68	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	3.8	13
69	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" Evolution-Ofthic/ostructureiandbardness in AZ31 alloy processed by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 98-106.	2.6	64
70	Interrelation of Microstructure and Corrosion Resistance in Biodegradable Magnesium Alloys with Aluminum, Lithium and Rare Earth Additions. Acta Physica Polonica A, 2015, 128, 491-497.	0.2	4
71	Evolution of Corrosion Resistance in the LAE442 Magnesium Alloy Processed by ECAP. Acta Physica Polonica A, 2015, 128, 772-775.	0.2	5
72	Single crystal growth of TIMETAL LCB titanium alloy by a floating zone method. Journal of Crystal Growth, 2014, 405, 92-96.	0.7	17

#	Article	IF	CITATIONS
73	Neutron Diffraction and Acoustic Emission Study of Mg-Al-Sr Alloy Reinforced with Short Saffil [®] Fibers Deformed in Compression. Materials Science Forum, 2014, 777, 92-98.	0.3	2
74	Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion. Materials Characterization, 2014, 98, 233-240.	1.9	36
75	Mechanical Properties and Dislocation Structure Evolution in Ti6Al7Nb Alloy Processed by High Pressure Torsion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 7-15.	1.1	24
76	Plastic Properties of a Mg-Al-Ca Alloy Reinforced with Short Saffil Fibers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 29-35.	1.1	7
77	Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Materials Science and Engineering C, 2014, 39, 371-379.	3.8	49
78	Effect of deformation schedules and initial states on structure and properties of Cu–0.18% Zr alloy after high-pressure torsion and heating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 598, 288-292.	2.6	24
79	overflow="scroll"> <mml:math si18.gif<br="" xmins:mml="http://www.w3.org/1998/Math/Math/Math/ML_altimg=">overflow="scroll"><mml:mrow><mml:mi>ï%</mml:mi></mml:mrow></mml:math> particles in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mrow><mml:mi>i2</mml:mi></mml:mrow>-Ti matrix studied by</mml:math 	3.8	30
80	smalFangle X-ray scattering. Acta Materialia, 2014, 81, 91-82. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Materials Characterization, 2014, 94, 69-79.	1.9	82
81	Effect of high pressure torsion on the aging kinetics of β-titanium Ti-15Mo alloy. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012068.	0.3	7
82	MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRA-FINE GRAINED AZ31 ALLOY PROCESSED BY ECAP. Acta Metallurgica Slovaca, 2014, 20, 258-264.	0.3	0
83	Mechanical properties and microstructure evolution in ultrafine-grained AZ31 alloy processed by severe plastic deformation. Journal of Materials Science, 2013, 48, 4705-4712.	1.7	26
84	Low Temperature Plasticity of Ultrafineâ€Grained AE42 and AZ31 Magnesium Alloys. Advanced Engineering Materials, 2013, 15, 352-357.	1.6	7
85	Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Applied Surface Science, 2013, 281, 44-48.	3.1	90
86	<i>In Situ</i> X-Ray Diffraction Study of Thermal Stability of Cu and Cu-Zr Samples Processed by ECAP. Materials Science Forum, 2013, 753, 279-284.	0.3	3
87	Acoustic emission study of Mg–Al–Sr alloy reinforced with short Saffil® fibers deformed in compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 575, 1-5.	2.6	8
88	Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Applied Surface Science, 2013, 281, 73-78.	3.1	36
89	Thermal Stability of Ultra-Fine Grained Magnesium Alloy Processed by Extrusion and ECAP. , 2013, , 175-179.		0
90	Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests. International Journal of Materials Research. 2012, 103, 688-693.	0.1	3

#	Article	IF	CITATIONS
91	Microstructures and mechanical properties of Mg–Zn–Y alloy consolidated from gas-atomized powders using high-pressure torsion. Journal of Materials Science, 2012, 47, 7117-7123.	1.7	31
92	Microstructure and dislocation density evolutions in MgAlZn alloy processed by severe plastic deformation. Journal of Materials Science, 2012, 47, 7860-7869.	1.7	44
93	Z-scan study of nonlinear absorption of gold nano-particles prepared by ion implantation in various types of silicate glasses. Optics Communications, 2012, 285, 2729-2733.	1.0	44
94	Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7, 96-105.	1.5	93
95	Low Temperature Plasticity of an Ultrafineâ€Grained Al–3Mg Alloy Prepared by Accumulative Roll Bonding. Advanced Engineering Materials, 2012, 14, 35-38.	1.6	5
96	The effect of microstructure on fatigue performance of Ti–6Al–4V alloy after EDM surface treatment for application in orthopaedics. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1955-1962.	1.5	60
97	Evolution of defects in copper deformed by high-pressure torsion. Acta Materialia, 2011, 59, 2322-2329.	3.8	115
98	Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 417-422.	1.5	39
99	Microstructure Changes and Physical Properties of the Intermetallic Compounds Formed at the Interface Between Sn-Cu Solders and a Cu Substrate Due to a Minor Addition of Ni. Journal of Electronic Materials, 2010, 39, 2553-2557.	1.0	9
100	Microstructure evolution of CuZr polycrystals processed by high-pressure torsion. Journal of Materials Science, 2010, 45, 4631-4644.	1.7	19
101	Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP. Journal of Materials Science, 2010, 45, 4665-4671.	1.7	50
102	Application of ultrasonic methods to determine elastic anisotropy of polycrystalline copper processed by equal-channel angular pressing. Acta Materialia, 2010, 58, 235-247.	3.8	44
103	Effect of equal channel angular pressing on microstructure, texture, and high-cycle fatigue performance of wrought magnesium alloys. International Journal of Materials Research, 2009, 100, 838-842.	0.1	15
104	Very high cycle fatigue behaviour of as-extruded AZ31, AZ80, and ZK60 magnesium alloys. International Journal of Materials Research, 2009, 100, 288-291.	0.1	34
105	EBSD investigation of the grain boundary distributions in ultrafine-grained Cu and Cu–Zr polycrystals prepared by equal-channel angular pressing. International Journal of Materials Research, 2009, 100, 785-789.	0.1	13
106	The Effect of the Superconducting Transition on Plastic Deformation of Ultrafineâ€Grained Aluminum. Advanced Engineering Materials, 2009, 11, 9-15.	1.6	3
107	Microstructure changes in a 2618 aluminium alloy during ageing and creep. Journal of Alloys and Compounds, 2009, 487, 146-151.	2.8	55
108	Intermetallic compounds at the interface between Sn–Cu(–Ni) solders and Cu substrate. International Journal of Materials Research, 2009, 100, 814-817.	0.1	4

#	Article	IF	CITATIONS
109	Effects of prior homogenization treatments on microstructure development and mechanical properties of the extruded wrought magnesium alloy ZK60. International Journal of Materials Research, 2009, 100, 370-373.	0.1	1
110	Electrochemical properties of fine-grained AZ31 magnesium alloy. International Journal of Materials Research, 2009, 100, 1213-1216.	0.1	15
111	Microstructural evolution of equal-channel angular pressed interstitial-free steel. International Journal of Materials Research, 2009, 100, 834-837.	0.1	5
112	XRD profile analysis of ECAP Cu and Cu + Zr samples. International Journal of Materials Research, 2009, 100, 880-883.	0.1	6
113	Annealing effects after various thermo-mechanical treatments on microstructure and mechanical properties of the wrought magnesium alloy AZ80. International Journal of Materials Research, 2009, 100, 374-377.	0.1	2
114	High temperature creep of modified α+β brasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 494, 113-121.	2.6	3
115	Low-temperature plastic strain of ultrafine-grain aluminum. Low Temperature Physics, 2008, 34, 665-671.	0.2	17
116	A Portrait of Copper Processed by Equal Channel Angular Pressing. Materials Transactions, 2008, 49, 31-37.	0.4	39
117	Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 116-120.	2.6	79
118	Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 243-247.	2.6	136
119	Effect of low temperature stabilisation on the precipitation of a continuously cast Al–Mg–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 375-379.	2.6	5
120	Mechanisms of plastic deformation in AZ31 magnesium alloy investigated by acoustic emission and transmission electron microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 311-315.	2.6	30
121	Influence of equal-channel angular pressing on the acoustic emission behaviour of magnesium alloy AZ31 under compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 111-115.	2.6	3
122	Effect of equal channel angular pressing on the deformation behaviour of magnesium alloy AZ31 under uniaxial compression. Journal of Materials Processing Technology, 2007, 184, 294-299.	3.1	39
123	Mechanical Properties and Bake Hardening Behaviour of two Cold Rolled Multiphase Sheet Steels subjected to CGL Heat Treatment Simulation. Steel Research International, 2006, 77, 668-674.	1.0	5
124	Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique. Acta Materialia, 2006, 54, 5361-5366.	3.8	64
125	Effect of microstructure on plastic deformation of Cu at low homologous temperatures. Acta Materialia, 2006, 54, 5581-5590.	3.8	68
126	Influence of Surface Skin on the Fatigue Properties of Die-Cast Magnesium Alloy AS21X. Materials Science Forum, 2005, 482, 379-382.	0.3	1

#	Article	IF	CITATIONS
127	Crack Growth Anomalies in Base Steel P91 and in HAZ. Materials Science Forum, 2005, 482, 383-386.	0.3	1
128	Structural transformations in continuously cast Al–Mg alloys. Journal of Alloys and Compounds, 2004, 378, 316-321.	2.8	6
129	Microstructure Evolution of Twin-Roll Cast AA5xxx Alloys during Homogenisation-Like Annealing. Materials Science Forum, 2002, 396-402, 711-716.	0.3	7
130	In-situ transmission electron microscopy observation of slip propagation in Σ3 bicrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 324, 183-189.	2.6	22
131	An evaluation of the creep characteristics of an AZ91 magnesium alloy composite using acoustic emission. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 338, 1-7.	2.6	14
132	Is plastic flow always controlled by dislocation mobility? An answer from in situ transmission electron microscopy straining tests. Journal of Microscopy, 2001, 203, 84-89.	0.8	5
133	Tensile deformation and fracture micromorphology of an Fe–28Al–4Cr–0.1Ce alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 289, 182-188.	2.6	16
134	Specific dislocation multiplication mechanisms and mechanical properties in nanoscaled multilayers: The example of pearlite. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1605-1619.	0.8	37
135	Grain boundary ensembles in polycrystals. Acta Materialia, 1996, 44, 2869-2882.	3.8	63
136	Dislocation glide and multiple slip. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 159, 143-149.	2.6	2
137	Substructure evolution and flow behaviour of AISI 316L stainless steel polycrystals at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 138, 237-245.	2.6	10
138	Mechanical Properties and Microstructure Development of Ultrafine-Grained Cu Processed by ECAP. Materials Science Forum, 0, 584-586, 440-445.	0.3	12
139	Plastic Deformation and Elastic Properties of Ti-Nb-Zr-Ta(-Fe-Si) Biomedical Alloys. Advanced Materials Research, 0, 922, 734-739.	0.3	2
140	Microstructure and Defect Structure Evolution in Ultra-Fine Grained MgAlZn Alloy. Materials Science Forum, 0, 783-786, 390-395.	0.3	0
141	<i>In Situ</i> Detection of Surface Micro-Cracking in Ultrafine-Grained AZ31 Magnesium Alloy by Resonant Ultrasound Spectroscopy. Key Engineering Materials, 0, 606, 87-90.	0.4	1
142	Mechanical Properties and Microstructure Development in Ultrafineâ€grained Materials Processed by Equalâ€channel Angular Pressing. , 0, , .		1
143	<i>In Situ</i> Observation of the Phase Transformations in Ti15Mo Alloy Deformed by High Pressure Torsion. Defect and Diffusion Forum, 0, 385, 206-211.	0.4	2