Debasish Manna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9310607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light-controlled self-assembly of non-photoresponsive nanoparticles. Nature Chemistry, 2015, 7, 646-652.	6.6	440
2	Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology, 2016, 11, 82-88.	15.6	305
3	Synthesis, Structure, Spirocyclization Mechanism, and Glutathione Peroxidase-like Antioxidant Activity of Stable Spirodiazaselenurane and Spirodiazatellurane. Journal of the American Chemical Society, 2010, 132, 5364-5374.	6.6	162
4	Antithyroid Drugs and Their Analogues: Synthesis, Structure, and Mechanism of Action. Accounts of Chemical Research, 2013, 46, 2706-2715.	7.6	144
5	Orthogonal Lightâ€Induced Selfâ€Assembly of Nanoparticles using Differently Substituted Azobenzenes. Angewandte Chemie - International Edition, 2015, 54, 12394-12397.	7.2	132
6	Regioselective Deiodination of Thyroxine by Iodothyronine Deiodinase Mimics: An Unusual Mechanistic Pathway Involving Cooperative Chalcogen and Halogen Bonding. Journal of the American Chemical Society, 2012, 134, 4269-4279.	6.6	130
7	Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry, 2019, 58, 234-244.	1.2	92
8	A Chemical Model for the Innerâ€Ring Deiodination of Thyroxine by Iodothyronine Deiodinase. Angewandte Chemie - International Edition, 2010, 49, 9246-9249.	7.2	54
9	Seleniumâ€Mediated Dehalogenation of Halogenated Nucleosides and its Relevance to the DNA Repair Pathway. Angewandte Chemie - International Edition, 2015, 54, 9298-9302.	7.2	54
10	Deiodination of Thyroid Hormones by Iodothyronine Deiodinase Mimics: Does an Increase in the Reactivity Alter the Regioselectivity?. Journal of the American Chemical Society, 2011, 133, 9980-9983.	6.6	43
11	Orthogonal Lightâ€Induced Selfâ€Assembly of Nanoparticles using Differently Substituted Azobenzenes. Angewandte Chemie, 2015, 127, 12571-12574.	1.6	42
12	A Singular System with Precise Dosing and Spatiotemporal Control of CRISPR as9. Angewandte Chemie - International Edition, 2019, 58, 6285-6289.	7.2	38
13	Halogen Bonding Controls the Regioselectivity of the Deiodination of Thyroid Hormones and their Sulfate Analogues. Chemistry - A European Journal, 2015, 21, 2409-2416.	1.7	30
14	Native Zinc Catalyzes Selective and Traceless Release of Small Molecules in β-Cells. Journal of the American Chemical Society, 2020, 142, 6477-6482.	6.6	20
15	LYTACs: An Emerging Tool for the Degradation of Non ytosolic Proteins. ChemMedChem, 2021, 16, 2951-2953.	1.6	19
16	Optochemical Control of Protein Degradation. ChemBioChem, 2020, 21, 2250-2252.	1.3	17
17	Halogen Bonding in Biomimetic Deiodination of Thyroid Hormones and their Metabolites and Dehalogenation of Halogenated Nucleosides. ChemBioChem, 2020, 21, 911-923.	1.3	16
18	Controlling PROTACs with Light. ChemMedChem, 2020, 15, 1258-1261.	1.6	13

DEBASISH MANNA

#	Article	IF	CITATIONS
19	Harnessing reaction-based probes to preferentially target pancreatic β-cells and β-like cells. Life Science Alliance, 2021, 4, e202000840.	1.3	10
20	Repurposing pinacol esters of boronic acids for tuning viscoelastic properties of glucose-responsive polymer hydrogels: effects on insulin release kinetics. Journal of Materials Chemistry B, 2022, 10, 7591-7599.	2.9	9
21	A Singular System with Precise Dosing and Spatiotemporal Control of CRISPRâ€Cas9. Angewandte Chemie, 2019, 131, 6351-6355.	1.6	5
22	Titelbild: Orthogonal Lightâ€Induced Selfâ€Assembly of Nanoparticles using Differently Substituted Azobenzenes (Angew. Chem. 42/2015). Angewandte Chemie, 2015, 127, 12347-12347.	1.6	2