Peter D F Isles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9310576/publications.pdf Version: 2024-02-01

DETED D F ISLES

#	Article	IF	CITATIONS
1	Resolving the Drivers of Algal Nutrient Limitation from Boreal to Arctic Lakes and Streams. Ecosystems, 2022, 25, 1682-1699.	1.6	7
2	Climate Change‣egacy Phosphorus Synergy Hinders Lake Response to Aggressive Water Policy Targets. Earth's Future, 2022, 10, .	2.4	6
3	Biomass, community composition and N:P recycling ratios of zooplankton in northern highâ€latitude lakes with contrasting levels of N deposition and dissolved organic carbon. Freshwater Biology, 2022, 67, 1508-1520.	1.2	7
4	Virtual Growing Pains: Initial Lessons Learned from Organizing Virtual Workshops, Summits, Conferences, and Networking Events during a Global Pandemic. Limnology and Oceanography Bulletin, 2021, 30, 1-11.	0.2	9
5	Trade-offs Between Light and Nutrient Availability Across Gradients of Dissolved Organic Carbon Lead to Spatially and Temporally Variable Responses of Lake Phytoplankton Biomass to Browning. Ecosystems, 2021, 24, 1837-1852.	1.6	16
6	Cyanobacterial blooms in oligotrophic lakes: Shifting the highâ€nutrient paradigm. Freshwater Biology, 2021, 66, 1846-1859.	1.2	67
7	Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyllâ€ <i>a</i> in north temperate lakes. Global Change Biology, 2021, 27, 4615-4629.	4.2	22
8	An operational framework for defining and forecasting phytoplankton blooms. Frontiers in Ecology and the Environment, 2021, 19, 443-450.	1.9	18
9	Global data set of long-term summertime vertical temperature profiles in 153 lakes. Scientific Data, 2021, 8, 200.	2.4	7
10	Lowered nutritional quality of plankton caused by global environmental changes. Global Change Biology, 2021, 27, 6294-6306.	4.2	26
11	Underwater dual-magnification imaging for automated lake plankton monitoring. Water Research, 2021, 203, 117524.	5.3	18
12	Deep Learning Classification of Lake Zooplankton. Frontiers in Microbiology, 2021, 12, 746297.	1.5	14
13	Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 2020, 10, 20514.	1.6	56
14	The misuse of ratios in ecological stoichiometry. Ecology, 2020, 101, e03153.	1.5	109
15	Does browning affect the identity of limiting nutrients in lakes?. Aquatic Sciences, 2020, 82, 1.	0.6	20
16	Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes. Aquatic Sciences, 2020, 82, 1.	0.6	15
17	Recent Synchronous Declines in DIN:TP in Swedish Lakes. Global Biogeochemical Cycles, 2018, 32, 208-225.	1.9	32
18	Winter weather and lakeâ€watershed physical configuration drive phosphorus, iron, and manganese dynamics in water and sediment of iceâ€covered lakes. Limnology and Oceanography, 2017, 62, 1620-1635.	1.6	26

PETER D F ISLES

#	Article	IF	CITATIONS
19	Modeling the drivers of interannual variability in cyanobacterial bloom severity using self-organizing maps and high-frequency data. Inland Waters, 2017, 7, 333-347.	1.1	8
20	Climate-driven changes in energy and mass inputs systematically alter nutrient concentration and stoichiometry in deep and shallow regions of Lake Champlain. Biogeochemistry, 2017, 133, 201-217.	1.7	44
21	The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: an extension of the Plankton Ecology Group (PEC) model. Inland Waters, 2016, 6, 565-580.	1.1	34
22	Coupled impacts of climate and land use change across a river–lake continuum: insights from an integrated assessment model of Lake Champlain's Missisquoi Basin, 2000–2040. Environmental Research Letters, 2016, 11, 114026.	2.2	40
23	The mobility of phosphorus, iron, and manganese through the sediment–water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions. Biogeochemistry, 2016, 127, 15-34.	1.7	62
24	Quantile regression improves models of lake eutrophication with implications for ecosystemâ€specific management. Freshwater Biology, 2015, 60, 1841-1853.	1.2	30
25	Characterization of Organic Phosphorus Form and Bioavailability in Lake Sediments using ³¹ P Nuclear Magnetic Resonance and Enzymatic Hydrolysis. Journal of Environmental Quality, 2015, 44, 882-894.	1.0	45
26	Dynamic Coupling of Iron, Manganese, and Phosphorus Behavior in Water and Sediment of Shallow Ice-Covered Eutrophic Lakes. Environmental Science & Technology, 2015, 49, 9758-9767.	4.6	41
27	Dynamic internal drivers of a historically severe cyanobacteria bloom in Lake Champlain revealed through comprehensive monitoring. Journal of Great Lakes Research, 2015, 41, 818-829.	0.8	45
28	A novel framework for quantifying past methane recycling by <i>Sphagnum</i> â€methanotroph symbiosis using carbon and hydrogen isotope ratios of leaf wax biomarkers. Geochemistry, Geophysics, Geosystems, 2014, 15, 1827-1836.	1.0	6