Jiafu Shi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9310548/jiafu-shi-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 4,229 114 35 h-index g-index citations papers 5,060 119 5.74 9.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
114	Mechanochemical synthesis of enzyme@covalent organic network nanobiohybrids. <i>Applied Materials Today</i> , 2022 , 26, 101381	6.6	1
113	Pickering interfacial biocatalysis with enhanced diffusion processes for CO2 mineralization. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 1184-1191	11.3	1
112	Interface engineering of organic-inorganic heterojunctions with enhanced charge transfer. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121261	21.8	2
111	Enzyme-photo-coupled catalytic systems. Chemical Society Reviews, 2021,	58.5	7
110	Interactions Between Microplastics and Heavy Metals in Aquatic Environments: A Review. <i>Frontiers in Microbiology</i> , 2021 , 12, 652520	5.7	13
109	Nonconventional Cofactor Regeneration Systems 2021 , 275-296		
108	Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactor-Dependent Biocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5421-5428	16.4	28
107	Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactor-Dependent Biocatalysis. <i>Angewandte Chemie</i> , 2021 , 133, 5481-5488	3.6	13
106	Metal Hydride-Embedded Titania Coating to Coordinate Electron Transfer and Enzyme Protection in Photo-enzymatic Catalysis. <i>ACS Catalysis</i> , 2021 , 11, 476-483	13.1	11
105	Mussel-inspired capsules toward reaction-triggered cargo release. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 792-798	7.8	4
104	Intensifying Electron Utilization by Surface-Anchored Rh Complex for Enhanced Nicotinamide Cofactor Regeneration and Photoenzymatic CO Reduction. <i>Research</i> , 2021 , 2021, 8175709	7.8	6
103	Granum-Inspired Photoenzyme-Coupled Catalytic System via Stacked Polymeric Carbon Nitride. <i>ACS Catalysis</i> , 2021 , 11, 9210-9220	13.1	0
102	Boosting Nitrogen Activation via Bimetallic Organic Frameworks for Photocatalytic Ammonia Synthesis. <i>ACS Catalysis</i> , 2021 , 11, 9986-9995	13.1	14
101	General framework for enzyme-photo-coupled catalytic system toward carbon dioxide conversion. <i>Current Opinion in Biotechnology</i> , 2021 , 73, 67-73	11.4	0
100	[email[protected] Carbon Aerogels with a Hierarchically Structured Surface for Treating Organic Pollutants. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 17529-17536	3.9	13
99	Immobilization of carbonic anhydrase for facilitated CO2 capture and separation. <i>Chinese Journal of Chemical Engineering</i> , 2020 , 28, 2817-2831	3.2	10
98	TA/Fe(III) anti-chloride coating to protect concrete. <i>Journal of Cleaner Production</i> , 2020 , 259, 120922	10.3	5

97	Superhydrophobic Metal Drganic Framework Nanocoating Induced by Metal-Phenolic Networks for Oily Water Treatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 1831-1839	8.3	17
96	Synergy of Electron Transfer and Electron Utilization via Metal©rganic Frameworks as an Electron Buffer Tank for Nicotinamide Regeneration. <i>ACS Catalysis</i> , 2020 , 10, 2894-2905	13.1	24
95	Unraveling and Manipulating of NADH Oxidation by Photogenerated Holes. ACS Catalysis, 2020, 10, 496	7 <u>1-3</u> 4977	217
94	Improving Photocatalytic Energy Conversion via NAD(P)H. <i>Joule</i> , 2020 , 4, 2055-2059	27.8	4
93	Design and Construction of EnzymeNanozyme Integrated Catalyst as a Multifunctional Detection Platform. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 20646-20655	3.9	4
92	Concerted Chemoenzymatic Synthesis of Eketo Acid through Compartmentalizing and Channeling of Metal Drganic Frameworks. <i>ACS Catalysis</i> , 2020 , 10, 9664-9673	13.1	15
91	Nanoporous Phyllosilicate Assemblies for Enzyme Immobilization <i>ACS Applied Bio Materials</i> , 2019 , 2, 777-786	4.1	13
90	Hierarchically Porous and Water-Tolerant Metal©rganic Frameworks for Enzyme Encapsulation. <i>Industrial & Description of the Encapsulation of the Encapsulation of the Encapsulation of the Engineering Chemistry Research</i> , 2019 , 58, 12835-12844	3.9	19
89	Crackled nanocapsules: the "imperfect" structure for enzyme immobilization. <i>Chemical Communications</i> , 2019 , 55, 7155-7158	5.8	10
88	Artificial Thylakoid for the Coordinated Photoenzymatic Reduction of Carbon Dioxide. <i>ACS Catalysis</i> , 2019 , 9, 3913-3925	13.1	45
87	Mussel-Inspired pH-Switched Assembly of Capsules with an Ultrathin and Robust Nanoshell. <i>ACS Applied Materials & District Materials & </i>	9.5	11
86	Coordination between Electron Transfer and Molecule Diffusion through a Bioinspired Amorphous Titania Nanoshell for Photocatalytic Nicotinamide Cofactor Regeneration. <i>ACS Catalysis</i> , 2019 , 9, 11492-	-13:501	1 ⁹
85	Bioinspired synthesis of nanofibers on monolithic scaffolds for enzyme immobilization with enhanced loading capacity and activity recovery. <i>Journal of Chemical Technology and Biotechnology</i> , 2019 , 94, 3763-3771	3.5	2
84	Plant polyphenol-inspired nano-engineering topological and chemical structures of commercial sponge surface for oils/organic solvents clean-up and recovery. <i>Chemosphere</i> , 2019 , 218, 559-568	8.4	16
83	Phosphorus Quantum Dots-Facilitated Enrichment of Electrons on g-C3N4 Hollow Tubes for Visible-Light-Driven Nicotinamide Adenine Dinucleotide Regeneration. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 285-295	8.3	28
82	One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. <i>Journal of Biotechnology</i> , 2018 , 266, 1-8	3.7	21
81	Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 1805-1815	6.7	47
80	Shielding of Enzymes on the Surface of Graphene-Based Composite Cellular Foams Through Bioinspired Mineralization. <i>Methods in Enzymology</i> , 2018 , 609, 355-370	1.7	1

79	Bioinspired construction of multi-enzyme catalytic systems. Chemical Society Reviews, 2018, 47, 4295-4	3 58 .5	90
78	Robust and Recyclable Two-Dimensional Nanobiocatalysts for Biphasic Reactions in Pickering Emulsions. <i>Industrial & Emulsions amp; Engineering Chemistry Research</i> , 2018 , 57, 8708-8717	3.9	11
77	Bio-inspired synthesis of three-dimensional porous g-C3N4@carbon microflowers with enhanced oxygen evolution reactivity. <i>Chemical Engineering Journal</i> , 2018 , 337, 312-321	14.7	35
76	Polymer@MOFs capsules prepared through controlled interfacial mineralization for switching on/off enzymatic reactions. <i>Applied Materials Today</i> , 2018 , 13, 320-328	6.6	11
75	Chloroplast-Inspired Artificial Photosynthetic Capsules for Efficient and Sustainable Enzymatic Hydrogenation. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 17114-17123	8.3	11
74	Catalysts from renewable resources for biodiesel production. <i>Energy Conversion and Management</i> , 2018 , 178, 277-289	10.6	101
73	g-C3N4@Fe2O3/C Photocatalysts: Synergistically Intensified Charge Generation and Charge Transfer for NADH Regeneration. <i>ACS Catalysis</i> , 2018 , 8, 5664-5674	13.1	99
72	Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways. <i>CheM</i> , 2017 , 2, 621-654	16.2	171
71	In situ biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis. <i>Nanotechnology</i> , 2017 , 28, 365604	3.4	11
70	Constructing Quantum [email[protected] Graphitic Carbon Nitride Isotype Heterojunctions for Enhanced Visible-Light-Driven NADH Regeneration and Enzymatic Hydrogenation. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 6247-6255	3.9	28
69	Coordination polymer nanocapsules prepared using metal-organic framework templates for pH-responsive drug delivery. <i>Nanotechnology</i> , 2017 , 28, 275601	3.4	33
68	Preparation of Ultrathin, Robust Nanohybrid Capsules through a "Beyond Biomineralization" Method. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 12841-12850	9.5	6
67	Shielding of Enzyme by a Stable and Protective Organosilica Layer on Monolithic Scaffolds for Continuous Bioconversion. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 10615-10622	3.9	12
66	Peony petal-like 3D graphene-nickel oxide nanocomposite decorated nickel foam as high-performance electrocatalyst for direct glucose alkaline fuel cell. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 29863-29873	6.7	24
65	Monolithic biocatalytic systems with enhanced stabilities constructed through biomimetic silicification-induced enzyme immobilization on rGO/FeOOH hydrogel. <i>Biochemical Engineering Journal</i> , 2017 , 117, 52-61	4.2	15
64	Combination of Redox Assembly and Biomimetic Mineralization To Prepare Graphene-Based Composite Cellular Foams for Versatile Catalysis. <i>ACS Applied Materials & Description of Materials & Description of Redox Assembly and Biomimetic Mineralization To Prepare Graphene-Based Composite Cellular Foams for Versatile Catalysis. <i>ACS Applied Materials & Description of Redox Assembly and Biomimetic Mineralization To Prepare Graphene-Based Composite Cellular Foams for Versatile Catalysis. ACS Applied Materials & Description Composite Cellular Foams for Versatile Catalysis. <i>ACS Applied Materials & Description Composite Cellular Foams for Versatile Catalysis. ACS Applied Materials & Description Composite Cellular Foams for Versatile Catalysis. ACS Applied Materials & Description Composite Cellular Foams for Versatile Catalysis. ACS Applied Materials & Description Composite Cellular Foams for Versatile Catalysis. ACS Applied Materials & Description Cellular Foams for Versatile Catalysis. ACS Applied Materials & Description Cellular Foams for Versatile Catalysis. ACS Applied Materials & Description Cellular Foams for Versatile Catalysis. ACS Applied Materials & Description Cellular Foams for Versatile Cellular Foams for Versat</i></i></i>	0-4395	8 ⁶
63	In situ synthesized rGOEe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. <i>Biochemical Engineering Journal</i> , 2016 , 105, 273-280	4.2	50
62	Enhancing 6-APA Productivity and Operational Stability of Penicillin G Acylase via Rapid Surface Capping on Commercial Resins. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 10263-10270	3.9	8

(2015-2016)

61	Enzyme-conjugated ZIF-8 particles as efficient and stable Pickering interfacial biocatalysts for biphasic biocatalysis. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2654-2661	7.3	76
60	Superhydrophobic Particles Derived from Nature-Inspired Polyphenol Chemistry for Liquid Marble Formation and Oil Spills Treatment. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 676-681	8.3	54
59	Transesterification of palm oil to fatty acids methyl ester using K 2 CO 3 /palygorskite catalyst. Energy Conversion and Management, 2016 , 116, 142-149	10.6	36
58	Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process. <i>ACS Applied Materials & Description</i> (1988) 8, 8076-85	9.5	21
57	Remarkably enhancing the biodiesel yield from palm oil upon abalone shell-derived CaO catalysts treated by ethanol. <i>Fuel Processing Technology</i> , 2016 , 143, 110-117	7.2	49
56	Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems. <i>Methods in Enzymology</i> , 2016 , 571, 87-112	1.7	2
55	An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds. <i>ACS Applied Materials & District Research</i> , 8, 25152-61	9.5	13
54	A biomimetic silicification approach to synthesize CaOBiO2 catalyst for the transesterification of palm oil into biodiesel. <i>Fuel</i> , 2015 , 153, 48-55	7.1	77
53	Facile preparation of porous magnetic polydopamine microspheres through an inverse replication strategy for efficient enzyme immobilization. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7194-7202	7-3	29
52	MOF-templated rough, ultrathin inorganic microcapsules for enzyme immobilization. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 6587-6598	7-3	18
51	Coordination-Enabled One-Step Assembly of Ultrathin, Hybrid Microcapsules with Weak pH-Response. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	37
50	Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Conversion and Management, 2015 , 98, 463-469	10.6	99
49	Porous CaO-based catalyst derived from PSS-induced mineralization for biodiesel production enhancement. <i>Energy Conversion and Management</i> , 2015 , 106, 405-413	10.6	24
48	Facile Method To Prepare Microcapsules Inspired by Polyphenol Chemistry for Efficient Enzyme Immobilization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 19570-8	9.5	47
47	PolymerIhorganic microcapsules fabricated by combining biomimetic adhesion and bioinspired mineralization and their use for catalase immobilization. <i>Biochemical Engineering Journal</i> , 2015 , 93, 281-	- 28 8	20
46	Mask-Like Symmetrical Microclusters through a Diffusion-Limited Assembly Approach. <i>Chemistry - A European Journal</i> , 2015 , 21, 10185-90	4.8	4
45	Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly(dopamine) and poly(norepinephrine). <i>RSC Advances</i> , 2015 , 5, 42461-42467	3.7	19
44	Enzymatic conversion of carbon dioxide. <i>Chemical Society Reviews</i> , 2015 , 44, 5981-6000	58.5	218

Three-Dimensional Porous Aerogel Constructed by q-C3N4 and Graphene Oxide Nanosheets with 43 Excellent Visible-Light Photocatalytic Performance. ACS Applied Materials & amp; Interfaces, 2015, 7, $25693^{5}701^{305}$ Fabrication of a Superhydrophobic, Fire-Resistant, and Mechanical Robust Sponge upon Polyphenol Chemistry for Efficiently Absorbing Oils/Organic Solvents. Industrial & Discrete Regimeering Chemistry 42 3.9 47 Research, 2015, 54, 1842-1848 Enhancing Catalytic Activity and Stability of Yeast Alcohol Dehydrogenase by Encapsulation in Chitosan-Calcium Phosphate Hybrid Beads. Industrial & Engineering Chemistry Research, 2015, 8 41 3.9 54, 597-604 Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Processing 40 7.2 108 Technology, **2015**, 133, 8-13 Synthesis of organic-inorganic hybrid microcapsules through in situ generation of an inorganic layer on an adhesive layer with mineralization-inducing capability. Journal of Materials Chemistry B, 2015, 39 7.3 22 3, 465-474 Facile fabrication of organicIhorganic composite beads by gelatin induced biomimetic mineralization for yeast alcohol dehydrogenase encapsulation. Journal of Molecular Catalysis B: 38 9 Enzymatic, **2014**, 100, 49-58 Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity. 5.8 16 37 Chemical Communications, 2014, 50, 12500-3 Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic 36 7.3 32 mineralization approach. Journal of Materials Chemistry B, 2014, 2, 4289-4296 Merging of covalent cross-linking and biomimetic mineralization into an LBL self-assembly process for the construction of robust organic-inorganic hybrid microcapsules. Journal of Materials 35 7.3 17 Chemistry B, 2014, 2, 4346-4355 Conferring an adhesion layer with mineralization-inducing capabilities for preparing 18 34 7.3 organic-inorganic hybrid microcapsules. Journal of Materials Chemistry B, 2014, 2, 1371-1378 An efficient and recyclable enzyme catalytic system constructed through the synergy between biomimetic mineralization and polyamine-salt aggregate assembly. Journal of Materials Chemistry B 33 7.3 11 , **2014**, 2, 4435-4441 Ultrasonic-assisted production of biodiesel from transesterification of palm oil over ostrich 11 128 eggshell-derived CaO catalysts. Bioresource Technology, 2014, 171, 428-32 Monolithic Macroporous Carbon Materials as High-Performance and Ultralow-Cost Sorbents for 31 37 Efficiently Solving Organic Pollution. Industrial & Engineering Chemistry Research, 2014, 53, 4888-4893 Preparation of Dopamine/Titania Hybrid Nanoparticles through Biomimetic Mineralization and Titanium(IV) atecholate Coordination for Enzyme Immobilization. Industrial & amp; Engineering 30 3.9 19 Chemistry Research, **2014**, 53, 12665-12672 Biomimetic and bioinspired membranes: Preparation and application. *Progress in Polymer Science*, 29.6 29 155 **2014**, 39, 1668-1720 28 Biomimetic and bioinspired synthesis of titania and titania-based materials. RSC Advances, 2014, 4, 12388.7 33 Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide 27 13.1 96 Reduction. ACS Catalysis, 2014, 4, 962-972 Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers. ACS Applied 26 9.5 100 Materials & Interfaces, 2014, 6, 14522-32

(2011-2014)

25	Design and synthesis of organic-inorganic hybrid capsules for biotechnological applications. <i>Chemical Society Reviews</i> , 2014 , 43, 5192-210	58.5	124
24	Highly efficient covalent immobilization of catalase on titanate nanotubes. <i>Biochemical Engineering Journal</i> , 2014 , 83, 8-15	4.2	32
23	Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres. <i>Materials Science and Engineering C</i> , 2013 , 33, 1438-45	8.3	28
22	Preparation of ultrathin, robust protein microcapsules through template-mediated interfacial reaction between amine and catechol groups. <i>Biomacromolecules</i> , 2013 , 14, 3861-9	6.9	15
21	Polydopamine microcapsules with different wall structures prepared by a template-mediated method for enzyme immobilization. <i>ACS Applied Materials & Distriction among the Property of the Pro</i>	9.5	79
20	Catechol modification and covalent immobilization of catalase on titania submicrospheres. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 92, 44-50		26
19	Composite polyelectrolyte multilayer membranes for oligosaccharides nanofiltration separation. <i>Carbohydrate Polymers</i> , 2013 , 94, 106-13	10.3	18
18	Synergy of Pickering Emulsion and Sol-Gel Process for the Construction of an Efficient, Recyclable Enzyme Cascade System. <i>Advanced Functional Materials</i> , 2013 , 23, 1450-1458	15.6	45
17	Exploring the segregating and mineralization-inducing capacities of cationic hydrophilic polymers for preparation of robust, multifunctional mesoporous hybrid microcapsules. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 5174-85	9.5	14
16	Dopamine-Modified Alginate Beads Reinforced by Cross-Linking via Titanium Coordination or Self-Polymerization and Its Application in Enzyme Immobilization. <i>Industrial & Documering Chemistry Research</i> , 2013 , 52, 14828-14836	3.9	37
15	Incorporating mobile nanospheres in the lumen of hybrid microcapsules for enhanced enzymatic activity. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 10433-6	9.5	15
14	Mussel-inspired surface capping and pore filling to confer mesoporous silica with high loading and enhanced stability of enzyme. <i>Microporous and Mesoporous Materials</i> , 2012 , 152, 122-127	5.3	25
13	Metal-organic coordination-enabled layer-by-layer self-assembly to prepare hybrid microcapsules for efficient enzyme immobilization. <i>ACS Applied Materials & Distriction (Materials & Distriction (Materials & Distriction) (Mate</i>	9.5	72
12	Fabrication of antimicrobial bacterial celluloseAg/AgCl nanocomposite using bacteria as versatile biofactory. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	52
11	Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	11
10	Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion. <i>Bioresource Technology</i> , 2012 , 118, 359-66	11	50
9	Sol C iel Derived Boehmite as an Efficient and Robust Carrier for Enzyme Encapsulation. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 255-261	3.9	18
8	Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization. <i>ACS Applied Materials & mp; Interfaces</i> , 2011 , 3, 881-9	9.5	90

3.6

7	Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 3, 597-60) § ·5	63
6	Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. <i>Green Chemistry</i> , 2011 , 13, 300-306	10	153
5	Sandwich-structured enzyme membrane reactor for efficient conversion of maltose into isomaltooligosaccharides. <i>Bioresource Technology</i> , 2010 , 101, 9144-9	11	31
4	Immobilized transglucosidase in biomimetic polymer[horganic hybrid capsules for efficient conversion of maltose to isomaltooligosaccharides. <i>Biochemical Engineering Journal</i> , 2009 , 46, 186-192	4.2	31
3	Biomimetic fabrication of hydroxyapatite-polysaccharide-formate dehydrogenase composite capsules for efficient CO(2) conversion. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2009 , 20, 1661-	7 ³ 4 ⁵	9
2	Biomimetic polymer-inorganic hybrid microcapsules for yeast alcohol dehydrogenase encapsulation. <i>Reactive and Functional Polymers</i> , 2008 , 68, 1507-1515	4.6	24
			·

General model for artificial photosynthesis with capsule-immobilized enzyme. *AICHE Journal*,e17409