
Gagan Deep

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9310217/publications.pdf Version: 2024-02-01

GACAN DEED

#	Article	IF	CITATIONS
1	Immunofluorescence-Based Method to Assess Cancer Biomarker in the Hypoxic Region of the Tumor. Methods in Molecular Biology, 2022, 2413, 37-43.	0.4	1
2	Characterization of Exosomal Surface Proteins by Immunogold Labeling. Methods in Molecular Biology, 2022, 2413, 177-182.	0.4	4
3	Optical Imaging of Matrix Metalloproteinases Activity in Prostate Tumors in Mice. Methods in Molecular Biology, 2022, 2413, 7-12.	0.4	0
4	Abstract P2-12-24: Exosomal metabolic signatures are associated with differential response to neoadjuvant chemotherapy in patients with breast cancer. Cancer Research, 2022, 82, P2-12-24-P2-12-24.	0.4	0
5	Chemopreventive efficacy of silibinin against basal cell carcinoma growth and progression in UVB-irradiated Ptch+/â ϵ^{*} mice. Carcinogenesis, 2022, , .	1.3	2
6	Mass Spectrometry-Based Proteome Profiling of Extracellular Vesicles Derived from the Cerebrospinal Fluid of Adult Rhesus Monkeys Exposed to Cocaine throughout Gestation. Biomolecules, 2022, 12, 510.	1.8	4
7	Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. Journal of the American Chemical Society, 2022, 144, 8317-8336.	6.6	32
8	Exosomal Metabolic Signatures Are Associated with Differential Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 5324.	1.8	6
9	Leptin modulated microRNA-628-5p targets Jagged-1 and inhibits prostate cancer hallmarks. Scientific Reports, 2022, 12, .	1.6	10
10	Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine, 2021, 63, 103192.	2.7	38
11	A geroscience motivated approach to treat Alzheimer's disease: Senolytics move to clinical trials. Mechanisms of Ageing and Development, 2021, 200, 111589.	2.2	15
12	Knockdown of microRNA-214-3p Promotes Tumor Growth and Epithelial-Mesenchymal Transition in Prostate Cancer. Cancers, 2021, 13, 5875.	1.7	3
13	Targeted microRNA characterization in various brain cellâ€derived exosome subtypes to identify novel biomarkers for Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.4	0
14	Carnitine Palmitoyltransferase 1 Regulates Prostate Cancer Growth under Hypoxia. Cancers, 2021, 13, 6302.	1.7	12
15	Syntaxin 6â€mediated exosome secretion regulates enzalutamide resistance in prostate cancer. Molecular Carcinogenesis, 2020, 59, 62-72.	1.3	41
16	Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy. Chemical Science, 2020, 11, 9784-9806.	3.7	67
17	Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorganic Chemistry, 2020, 59, 16341-16360.	1.9	37
18	Role of TRP Channels in Shaping the Gut Microbiome. Pathogens, 2020, 9, 753.	1.2	10

GAGAN DEEP

#	Article	IF	CITATIONS
19	A novel approach to isolate brainâ€eell–derived exosomes from plasma to better understand pathogenesis of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e044894.	0.4	2
20	Exosomes in hypoxia-induced remodeling of the tumor microenvironment. Cancer Letters, 2020, 488, 1-8.	3.2	55
21	Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at preâ€metastatic niches. Molecular Carcinogenesis, 2020, 59, 323-332.	1.3	47
22	Hypoxia in tumor microenvironment regulates exosome biogenesis: Molecular mechanisms and translational opportunities. Cancer Letters, 2020, 479, 23-30.	3.2	103
23	Emerging role of microRNA 628-5p as a novel biomarker for cancer and other diseases. Tumor Biology, 2019, 41, 101042831988134.	0.8	11
24	Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Research, 2019, 9, 43.	1.1	12
25	CPT1A Supports Castration-Resistant Prostate Cancer in Androgen-Deprived Conditions. Cells, 2019, 8, 1115.	1.8	23
26	Silibinin inhibits ultraviolet B radiationâ€induced mast cells recruitment and bone morphogenetic protein 2 expression in the skin at early stages in Ptch(+/â^') mouse model of basal cell carcinoma. Molecular Carcinogenesis, 2019, 58, 1260-1271.	1.3	6
27	Syntaxin 6: A novel predictive and prognostic biomarker in papillary renal cell carcinoma. Scientific Reports, 2019, 9, 3146.	1.6	10
28	Exosome proteomic analyses identify inflammatory phenotype and novel biomarkers in African American prostate cancer patients. Cancer Medicine, 2019, 8, 1110-1123.	1.3	69
29	Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Scientific Reports, 2018, 8, 3853.	1.6	84
30	Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells. Biochemical and Biophysical Research Communications, 2018, 499, 1004-1010.	1.0	27
31	Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 117-127.	3.3	106
32	Detection of the receptor for advanced glycation endproducts in neuronally-derived exosomes in plasma. Biochemical and Biophysical Research Communications, 2018, 500, 892-896.	1.0	22
33	Bitter melon juice exerts its efficacy against pancreatic cancer via targeting both bulk and cancer stem cells. Molecular Carcinogenesis, 2018, 57, 1166-1180.	1.3	11
34	Procyanidin B2 3,3″â€diâ€Oâ€gallate induces oxidative stressâ€mediated cell death in prostate cancer cells via inhibiting MAP kinase phosphatase activity and activating ERK1/2 and AMPK. Molecular Carcinogenesis, 2018, 57, 57-69.	1.3	22
35	Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer. Oncotarget, 2018, 9, 13894-13910.	0.8	47
36	Serotonin induced hepatic steatosis is associated with modulation of autophagy and notch signaling pathway. Cell Communication and Signaling, 2018, 16, 78.	2.7	30

GAGAN DEEP

#	Article	IF	CITATIONS
37	Dysregulated gene expression predicts tumor aggressiveness in African-American prostate cancer patients. Scientific Reports, 2018, 8, 16335.	1.6	23
38	A novel approach to target hypoxic cancer cells via combining β-oxidation inhibitor etomoxir with radiation. Hypoxia (Auckland, N Z), 2018, Volume 6, 23-33.	1.9	33
39	Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis. Carcinogenesis, 2017, 38, 40-50.	1.3	36
40	Silibinin inhibits hypoxiaâ€induced HIFâ€1αâ€mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics. Molecular Carcinogenesis, 2017, 56, 833-848.	1.3	49
41	Exosomes-based biomarker discovery for diagnosis and prognosis of prostate cancer. Frontiers in Bioscience - Landmark, 2017, 22, 1682-1696.	3.0	20
42	Dietary Polysaccharides in the Amelioration of Gut Microbiome Dysbiosis and Metabolic Diseases. Obesity & Control Therapies: Open Access, 2017, 4, .	0.3	25
43	Oxidative Stress in Metabolic Disorders: Pathogenesis, Prevention, and Therapeutics. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-3.	1.9	22
44	Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis. International Journal of Molecular Sciences, 2016, 17, 1061.	1.8	77
45	Talarolutins A–D: Meroterpenoids from an endophytic fungal isolate of Talaromyces minioluteus. Phytochemistry, 2016, 126, 4-10.	1.4	17
46	Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity. Scientific Reports, 2016, 6, 23135.	1.6	42
47	Pannorin B, a new naphthopyrone from an endophytic fungal isolate of <i>Penicillium</i> sp. Magnetic Resonance in Chemistry, 2016, 54, 164-167.	1.1	12
48	Silibinin and its 2,3â€dehydroâ€derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Molecular Carcinogenesis, 2016, 55, 3-14.	1.3	28
49	Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 2016, 148, 183-193.	2.0	758
50	Chemopreventive opportunities to control basal cell carcinoma: Current perspectives. Molecular Carcinogenesis, 2015, 54, 688-697.	1.3	6
51	Asiatic acid induces endoplasmic reticulum stress and apoptotic death in glioblastoma multiforme cells both in vitro and in vivo. Molecular Carcinogenesis, 2015, 54, 1417-1429.	1.3	33
52	Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment. Critical Reviews in Oncogenesis, 2015, 20, 419-434.	0.2	95
53	Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts. Oncotarget, 2015, 6, 39594-39606.	0.8	23
54	Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells. International Journal of Oncology, 2015, 46, 1849-1857.	1.4	22

GAGAN DEEP

#	Article	IF	CITATIONS
55	Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells. Molecular Carcinogenesis, 2015, 54, 1734-1747.	1.3	17
56	Silibinin prevents prostate cancer cell-mediated differentiation of naÃ⁻ve fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2. Molecular Carcinogenesis, 2015, 54, 730-741.	1.3	32
57	Inhibition of Lipid Oxidation Increases Glucose Metabolism and Enhances 2-Deoxy-2-[18F]Fluoro-d-Glucose Uptake in Prostate Cancer Mouse Xenografts. Molecular Imaging and Biology, 2015, 17, 529-538.	1.3	54
58	Phylogenetic and chemical diversity of fungal endophytes isolated from <i>Silybum marianum</i> (L) Gaertn. (milk thistle). Mycology, 2015, 6, 8-27.	2.0	29
59	An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin. Current Pharmacology Reports, 2015, 1, 206-215.	1.5	49
60	Silibinin Preferentially Radiosensitizes Prostate Cancer by Inhibiting DNA Repair Signaling. Molecular Cancer Therapeutics, 2015, 14, 2722-2734.	1.9	33
61	Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Molecular Carcinogenesis, 2015, 54, 554-565.	1.3	324
62	Hypoxia induces triglycerides accumulation in prostate cancer cells and extracellular vesicles supporting growth and invasiveness following reoxygenation. Oncotarget, 2015, 6, 22836-22856.	0.8	85
63	SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Molecular Cancer, 2014, 13, 37.	7.9	75
64	The strategies to control prostate cancer by chemoprevention approaches. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 760, 1-15.	0.4	30
65	Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1. Oncotarget, 2014, 5, 10017-10033.	0.8	53
66	Targeting Tumor Microenvironment with Silibinin: Promise and Potential for a Translational Cancer Chemopreventive Strategy. Current Cancer Drug Targets, 2013, 13, 486-499.	0.8	56
67	Angiopreventive Efficacy of Pure Flavonolignans from Milk Thistle Extract against Prostate Cancer: Targeting VEGF-VEGFR Signaling. PLoS ONE, 2012, 7, e34630.	1.1	49
68	Role of E-cadherin in Antimigratory and Antiinvasive Efficacy of Silibinin in Prostate Cancer Cells. Cancer Prevention Research, 2011, 4, 1222-1232.	0.7	70
69	Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer. Cancer and Metastasis Reviews, 2010, 29, 447-463.	2.7	212
70	Isosilybin A induces apoptosis in human prostate cancer cells via targeting Akt, NFâ€₽̂B, and androgen receptor signaling. Molecular Carcinogenesis, 2010, 49, 902-912.	1.3	28
71	Silibinin Suppresses Growth of Human Prostate Carcinoma PC-3 Orthotopic Xenograft via Activation of Extracellular Signal-Regulated Kinase 1/2 and Inhibition of Signal Transducers and Activators of Transcription Signaling. Clinical Cancer Research, 2009, 15, 613-621.	3.2	93
72	Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. International Journal of Cancer, 2008, 123, 41-50.	2.3	66

#	Article	IF	CITATIONS
73	Isosilibinin inhibits advanced human prostate cancer growth in athymic nude mice: Comparison with silymarin and silibinin. International Journal of Cancer, 2008, 123, 2750-2758.	2.3	36
74	New combination therapies with cell-cycle agents. Current Opinion in Investigational Drugs, 2008, 9, 591-604.	2.3	30