
Matteo Monai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/930971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamentals and Catalytic Applications of CeO ₂ -Based Materials. Chemical Reviews, 2016, 116, 5987-6041.	47.7	1,883
2	The renaissance of the Sabatier reaction and its applications on Earth and in space. Nature Catalysis, 2019, 2, 188-197.	34.4	369
3	Mechanisms for High Selectivity in the Hydrodeoxygenation of 5-Hydroxymethylfurfural over PtCo Nanocrystals. ACS Catalysis, 2016, 6, 4095-4104.	11.2	124
4	Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nature Communications, 2019, 10, 5330.	12.8	124
5	Structure Sensitivity in Steam and Dry Methane Reforming over Nickel: Activity and Carbon Formation. ACS Catalysis, 2020, 10, 1428-1438.	11.2	109
6	Catalytic Oxidation of Methane: Pd and Beyond. European Journal of Inorganic Chemistry, 2018, 2018, 2884-2893.	2.0	105
7	Propane to olefins tandem catalysis: a selective route towards light olefins production. Chemical Society Reviews, 2021, 50, 11503-11529.	38.1	104
8	Base metal-Pt alloys: A general route to high selectivity and stability in the production of biofuels from HMF. Applied Catalysis B: Environmental, 2016, 199, 439-446.	20.2	100
9	Methane Catalytic Combustion over Hierarchical Pd@CeO ₂ /Siâ€Al ₂ O ₃ : Effect of the Presence of Water. ChemCatChem, 2015, 7, 2038-2046.	3.7	98
10	Smart Pd Catalyst with Improved Thermal Stability Supported on High-Surface-Area LaFeO ₃ Prepared by Atomic Layer Deposition. Journal of the American Chemical Society, 2018, 140, 4841-4848.	13.7	85
11	Unraveling the surface state and composition of highly selective nanocrystalline Ni–Cu alloy catalysts for hydrodeoxygenation of HMF. Catalysis Science and Technology, 2017, 7, 1735-1743.	4.1	82
12	The effect of sulfur dioxide on the activity of hierarchical Pd-based catalysts in methane combustion. Applied Catalysis B: Environmental, 2017, 202, 72-83.	20.2	80
13	Brookite: Nothing New under the Sun?. Catalysts, 2017, 7, 304.	3.5	71
14	Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nature Communications, 2022, 13, 324.	12.8	69
15	Dye-sensitized photocatalytic hydrogen production: distinct activity in a glucose derivative of a phenothiazine dye. Chemical Communications, 2016, 52, 6977-6980.	4.1	55
16	The H2 Pressure Dependence of Hydrodeoxygenation Selectivities for Furfural Over Pt/C Catalysts. Catalysis Letters, 2016, 146, 711-717.	2.6	54
17	Dye-Sensitized Photocatalytic Hydrogen Generation: Efficiency Enhancement by Organic Photosensitizer–Coadsorbent Intermolecular Interaction. ACS Energy Letters, 2018, 3, 85-91.	17.4	48
18	Highly efficient hydrogen production through ethanol photoreforming by a carbon nanocone/Pd@TiO ₂ hybrid catalyst. Chemical Communications, 2016, 52, 764-767.	4.1	45

ΜΑΤΤΕΟ ΜΟΝΑΙ

#	Article	IF	CITATIONS
19	Nanostructured Pd Pt nanoparticles: evidences of structure/performance relations in catalytic H2 production reactions. Applied Catalysis B: Environmental, 2018, 236, 88-98.	20.2	45
20	Modification of Pd/CeO2 catalyst by Atomic Layer Deposition of ZrO2. Applied Catalysis B: Environmental, 2016, 197, 280-285.	20.2	38
21	Towards Sustainable H ₂ Production: Rational Design of Hydrophobic Triphenylamineâ€based Dyes for Sensitized Ethanol Photoreforming. ChemSusChem, 2018, 11, 793-805.	6.8	36
22	High-surface-area, iron-oxide films prepared by atomic layer deposition on γ-Al2O3. Applied Catalysis A: General, 2017, 534, 70-77.	4.3	34
23	A New Porous Hybrid Material Derived From Silica Fume and Alginate for Sustainable Pollutants Reduction. Frontiers in Chemistry, 2018, 6, 60.	3.6	34
24	Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis. Nature Communications, 2021, 12, 7096.	12.8	33
25	Cerium Oxide Nanoparticles Absorption through Intact and Damaged Human Skin. Molecules, 2019, 24, 3759.	3.8	32
26	H2 production by photocatalytic reforming of oxygenated compounds using TiO2-based materials. Materials Science in Semiconductor Processing, 2016, 42, 122-130.	4.0	30
27	<i>In situ</i> Nanoscale Infrared Spectroscopy of Water Adsorption on Nanoislands of Surfaceâ€Anchored Metalâ€Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 1620-1624.	13.8	29
28	Phosphorus poisoning during wet oxidation of methane over Pd@CeO2/graphite model catalysts. Applied Catalysis B: Environmental, 2016, 197, 271-279.	20.2	28
29	The water gas shift reaction over Pt–CeO2 nanoparticles confined within mesoporous SBA-16. Journal of Materials Chemistry A, 2017, 5, 20024-20034.	10.3	25
30	<i>In Situ</i> X-ray Raman Scattering Spectroscopy of the Formation of Cobalt Carbides in a Co/TiO ₂ Fischer–Tropsch Synthesis Catalyst. ACS Catalysis, 2021, 11, 809-819.	11.2	24
31	Enhanced photocatalytic hydrogen generation using carbazole-based sensitizers. Sustainable Energy and Fuels, 2017, 1, 694-698.	4.9	23
32	<i>Inâ€Situ</i> Shellâ€Isolated Nanoparticleâ€Enhanced Raman Spectroscopy of Nickelâ€Catalyzed Hydrogenation Reactions. ChemPhysChem, 2020, 21, 625-632.	2.1	21
33	Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species and activity in methane combustion. Catalysis Today, 2021, 382, 120-129.	4.4	21
34	Alkali Promotion in the Formation of CH ₄ from CO ₂ and Renewably Produced H ₂ over Supported Ni Catalysts. ChemCatChem, 2020, 12, 2792-2800.	3.7	17
35	From metal to metal-free catalysts: Routes to sustainable chemistry. Advances in Catalysis, 2018, 63, 1-73.	0.2	16
36	Supported Mn ₃ O ₄ Nanosystems for Hydrogen Production through Ethanol Photoreforming. Langmuir, 2018, 34, 4568-4574.	3.5	13

ΜΑΤΤΕΟ ΜΟΝΑΙ

#	Article	IF	CITATIONS
37	Nano-scale insights regarding coke formation in zeolite SSZ-13 subject to the methanol-to-hydrocarbons reaction. Catalysis Science and Technology, 2022, 12, 1220-1228.	4.1	13
38	New insights into the NH ₃ -selective catalytic reduction of NO over Cu-ZSM-5 as revealed by <i>operando</i> spectroscopy. Catalysis Science and Technology, 2022, 12, 2589-2603.	4.1	12
39	A Study of How LaFeO ₃ and CaTiO ₃ Supports Affect the Oxidation, Hydrogenation, and Methane Steam Reforming Activity of Pt and Ni Catalysts. Journal of Physical Chemistry C, 2022, 126, 11619-11628.	3.1	7
40	In situ Nanoscale Infrared Spectroscopy of Water Adsorption on Nanoislands of Surfaceâ€Anchored Metalâ€Organic Frameworks. Angewandte Chemie, 2021, 133, 1644-1648.	2.0	5
41	Crowded catalyst, better catalyst. National Science Review, 2021, 8, nwab141.	9.5	3
42	Methane Catalytic Combustion over Hierarchical Pd@CeO2/Si-Al2O3: Effect of the Presence of Water. ChemCatChem, 2015, 7, 1978-1978.	3.7	2
43	Nanoscale Chemical Imaging in Zeolite Catalysts by Atom Probe Tomography. Microscopy and Microanalysis, 2021, 27, 984-985.	0.4	0