Marcin Smiglak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9309599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The third evolution of ionic liquids: active pharmaceutical ingredients. New Journal of Chemistry, 2007, 31, 1429.	1.4	766
2	The Second Evolution of Ionic Liquids: From Solvents and Separations to Advanced Materials—Energetic Examples from the Ionic Liquid Cookbook. Accounts of Chemical Research, 2007, 40, 1182-1192.	7.6	454
3	Ionic liquids for energy, materials, and medicine. Chemical Communications, 2014, 50, 9228-9250.	2.2	447
4	Combustible ionic liquids by design: is laboratory safety another ionic liquid myth?. Chemical Communications, 2006, , 2554.	2.2	301
5	Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New Journal of Chemistry, 2009, 33, 26-33.	1.4	173
6	Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chemistry, 2006, 8, 798.	4.6	146
7	1-Butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate: a novel ionic liquid containing a rigid, planar energetic anion. Chemical Communications, 2005, , 868.	2.2	99
8	Ionic liquids via reaction of the zwitterionic 1,3-dimethylimidazolium-2-carboxylate with protic acids. Overcoming synthetic limitations and establishing new halide free protocols for the formation of ILs. Green Chemistry, 2007, 9, 90-98.	4.6	93
9	In Search of Ionic Liquids Incorporating Azolate Anions. Chemistry - A European Journal, 2006, 12, 4630-4641.	1.7	76
10	Ionic liquids as bioactive chemical tools for use in agriculture and the preservation of agricultural products. Green Chemistry, 2018, 20, 4764-4789.	4.6	68
11	Strategies toward the design of energetic ionic liquids: nitro- and nitrile-substituted N,N′-dialkylimidazolium salts. New Journal of Chemistry, 2006, 30, 349.	1.4	62
12	An Intermediate for the Clean Synthesis of Ionic Liquids: Isolation and Crystal Structure of 1,3-Dimethylimidazolium Hydrogen Carbonate Monohydrate. Chemistry - A European Journal, 2007, 13, 5207-5212.	1.7	58
13	Mixtures of ionic liquids as more efficient media for cellulose dissolution. Carbohydrate Polymers, 2017, 178, 277-285.	5.1	58
14	Catalytic ignition of ionic liquids for propellant applications. Chemical Communications, 2010, 46, 8965.	2.2	54
15	Ionic Liquids Based on Azolate Anions. Chemistry - A European Journal, 2010, 16, 1572-1584.	1.7	44
16	Highly Effective Supported Ionic Liquid-Phase (SILP) Catalysts: Characterization and Application to the Hydrosilylation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4699-4706.	3.2	39
17	Synthesis, limitations, and thermal properties of energetically-substituted, protonated imidazolium picrate and nitrate salts and further comparison with their methylated analogs. New Journal of Chemistry, 2012, 36, 702-722.	1.4	37
18	Cationic derivatives of the plant resistance inducer benzo[1,2,3]thiadiazole-7-carbothioic acid S-methyl ester (BTH) as bifunctional ionic liquids. Tetrahedron Letters, 2014, 55, 3565-3568.	0.7	37

MARCIN SMIGLAK

#	Article	IF	CITATIONS
19	Bifunctional quaternary ammonium salts based on benzo[1,2,3]thiadiazole-7-carboxylate as plant systemic acquired resistance inducers. New Journal of Chemistry, 2014, 38, 1372.	1.4	34
20	Dual Functional Salts of Benzo[1.2.3]thiadiazole-7-carboxylates as a Highly Efficient Weapon Against Viral Plant Diseases. ACS Sustainable Chemistry and Engineering, 2017, 5, 4197-4204.	3.2	33
21	Ionic Liquids with Natural Origin Component: A Path to New Plant Protection Products. ACS Sustainable Chemistry and Engineering, 2020, 8, 842-852.	3.2	31
22	Direct, Atom Efficient, and Halideâ€Free Syntheses of Azolium Azolate Energetic Ionic Liquids and Their Eutectic Mixtures, and Method for Determining Eutectic Composition. Chemistry - A European Journal, 2008, 14, 11314-11319.	1.7	30
23	Deep eutectic solvents based on choline cation - Physicochemical properties and influence on enzymatic reaction with β-galactosidase. International Journal of Biological Macromolecules, 2019, 136, 296-304.	3.6	30
24	New Dual Functional Salts Based on Cationic Derivative of Plant Resistance Inducer—Benzo[1.2.3]thiadiazole-7-carbothioic Acid, S-Methyl Ester. ACS Sustainable Chemistry and Engineering, 2016, 4, 3344-3351.	3.2	29
25	New hydrogen carbonate precursors for efficient and byproduct-free syntheses of ionic liquids based on 1,2,3-trimethylimidazolium and N,N-dimethylpyrrolidinium cores. Green Chemistry, 2010, 12, 491.	4.6	27
26	Synthesis of N-cyanoalkyl-functionalized imidazolium nitrate and dicyanamide ionic liquids with a comparison of their thermal properties for energetic applications. New Journal of Chemistry, 2011, 35, 1701.	1.4	27
27	Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction. Molecules, 2016, 21, 1115.	1.7	27
28	Eutectic mixtures of pyrrolidinium-based ionic liquids. Fluid Phase Equilibria, 2016, 408, 1-9.	1.4	26
29	Crystallization of Uranyl Salts from Dialkylimidazolium Ionic Liquids or Their Precursors. European Journal of Inorganic Chemistry, 2010, 2010, 2760-2767.	1.0	24
30	New approach to hydrosilylation reaction in ionic liquids as solvent in microreactor system. RSC Advances, 2016, 6, 61860-61868.	1.7	23
31	Assessment of the Efficacy and Mode of Action of Benzo(1,2,3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester (BTH) and Its Derivatives in Plant Protection Against Viral Disease. International Journal of Molecular Sciences, 2019, 20, 1598.	1.8	23
32	New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation. New Journal of Chemistry, 2018, 42, 11984-11990.	1.4	22
33	Properties modification by eutectic formation in mixtures of ionic liquids. RSC Advances, 2015, 5, 22178-22187.	1.7	21
34	The effect of the catalyst and the type of ionic liquid on the hydrosilylation process under batch and continuous reaction conditions. New Journal of Chemistry, 2018, 42, 5229-5236.	1.4	16
35	Structure-property relationships of tailored imidazolium- and pyrrolidinium-based poly(ionic liquid)s. Solid-like vs. gel-like systems. Polymer, 2020, 192, 122262.	1.8	16
36	Acceleration of lactose hydrolysis using beta-galactosidase and deep eutectic solvents. Food Chemistry, 2022, 384, 132498.	4.2	15

MARCIN SMIGLAK

#	Article	IF	CITATIONS
37	Solvent-free synthesis of benzothiazole-based quaternary ammonium salts: precursors to ionic liquids. Arkivoc, 2010, 2010, 19-37.	0.3	14
38	Platinum and rhodium complexes ligated by imidazolium-substituted phosphine as efficient and recyclable catalysts for hydrosilylation. RSC Advances, 2019, 9, 29396-29404.	1.7	14
39	Synthesis and characterization of potentially polymerizable amine-derived ionic liquids bearing 4-vinylbenzyl group. Journal of Molecular Liquids, 2019, 283, 427-439.	2.3	14
40	A general design platform for ionic liquid ions based on bridged multi-heterocycles with flexible symmetry and charge. Chemical Communications, 2010, 46, 3544.	2.2	13
41	An efficient method for synthesizing monofunctionalized derivatives of 1,1,3,3-tetramethyldisiloxane in ionic liquids as recoverable solvents for rhodium catalyst. Catalysis Communications, 2018, 108, 59-63.	1.6	13
42	Thermal behaviour of mixtures of 1-alkylpyridinium halides with and without a common ion. Journal of Molecular Liquids, 2018, 268, 781-790.	2.3	13
43	Continuous flow synthesis of diaryl ketones by coupling of aryl Grignard reagents with acyl chlorides under mild conditions in the ecofriendly solvent 2-methyltetrahydrofuran. RSC Advances, 2019, 9, 2199-2204.	1.7	13
44	New bifunctional ionic liquid-based plant systemic acquired resistance (SAR) inducers with an improved environmental hazard profile. Green Chemistry, 2021, 23, 5138-5149.	4.6	13
45	Azolium azolates from reactions of neutral azoles with 1,3-dimethyl-imidazolium-2-carboxylate, 1,2,3-trimethyl-imidazolium hydrogen carbonate, and N,N-dimethyl-pyrrolidinium hydrogen carbonate. New Journal of Chemistry, 2013, 37, 1461.	1.4	12
46	Anhydrous Caffeine Hydrochloride and Its Hydration. Crystal Growth and Design, 2012, 12, 4658-4662.	1.4	9
47	Solid–liquid equilibria for a pyrrolidinium-based common-cation ternary ionic liquid system, and for a pyridinium-based ternary reciprocal ionic liquid system: an experimental study and a thermodynamic model. Physical Chemistry Chemical Physics, 2018, 20, 637-657.	1.3	9
48	Ionic liquids—a novel material for planar photonics. Nanotechnology, 2018, 29, 475202.	1.3	9
49	Ionic liquids for active photonics components fabrication. Optical Materials, 2019, 89, 106-111.	1.7	9
50	Ionic Liquidâ€Based Routes to Conversion or Reuse of Recycled Ammonium Perchlorate. Chemistry - A European Journal, 2009, 15, 13441-13448.	1.7	8
51	Efficient synthesis of E-1,2-bis(silyl)ethenes via ruthenium-catalyzed homocoupling of vinylsilanes carried out in ionic liquids. Applied Catalysis A: General, 2012, 445-446, 261-268.	2.2	8
52	Versatile Method for the Simultaneous Synthesis of Two Ionic Liquids, Otherwise Difficult to Obtain, with High Atom Economy. ChemistryOpen, 2019, 8, 972-983.	0.9	8
53	Electron Beam Patterning of Polymerizable Ionic Liquid Films for Application in Photonics. Langmuir, 2019, 35, 11968-11978.	1.6	8
54	Synthesis and characterization of nitrogen-based ionic liquids bearing allyl groups and examples of their application. New Journal of Chemistry, 2020, 44, 12274-12288.	1.4	8

MARCIN SMIGLAK

#	Article	IF	CITATIONS
55	Use of New BTH Derivative as Supplement or Substitute of Standard Fungicidal Program in Strawberry Cultivation. Agronomy, 2021, 11, 1031.	1.3	8
56	Optimization and intensification of hydrosilylation reactions using a microreactor system. New Journal of Chemistry, 2018, 42, 15332-15339.	1.4	7
57	The Co-Culture of Staphylococcal Biofilm and Fibroblast Cell Line: The Correlation of Biological Phenomena with Metabolic NMR1 Footprint. International Journal of Molecular Sciences, 2021, 22, 5826.	1.8	7
58	Interaction of electron beam with ionic liquids and its application for micropatterning. European Polymer Journal, 2021, 156, 110615.	2.6	7
59	Synthesis, characterization and biological activity of bifunctional ionic liquids based on dodine ion. Pest Management Science, 2022, 78, 446-455.	1.7	7
60	Mono N-Alkylated DABCO-Based Ionic Liquids and Their Application as Latent Curing Agents for Epoxy Resins. ACS Applied Polymer Materials, 2021, 3, 5481-5493.	2.0	7
61	Derivatives of Isonicotinic Acid as New Efficient Systemic Acquired Resistance (SAR) Inducers. ChemistrySelect, 2020, 5, 10759-10764.	0.7	6
62	Physical properties and solid-liquid equilibria for hexafluorophosphate-based ionic liquid ternary mixtures and their corresponding subsystems. Journal of Molecular Liquids, 2020, 316, 113742.	2.3	4
63	SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane. Catalysts, 2020, 10, 1414.	1.6	4
64	A Novel Plant Resistance Inducer for the Protection of European Ash (Fraxinus excelsior L.) against Hymenoscyphus fraxineus—Preliminary Studies. Forests, 2021, 12, 1072.	0.9	4
65	Fluorescent ionic liquid micro reservoirs fabricated by dual-step E-beam patterning. Materials Research Bulletin, 2021, 142, 111434.	2.7	4
66	Viscosity of a Ternary Reciprocal System Consisting of 1-Alkylpyridinium Halides. Industrial & Engineering Chemistry Research, 2020, 59, 11823-11838.	1.8	3
67	Simple modifications of nicotinic, isonicotinic, and 2,6-dichloroisonicotinic acids toward new weapons against plant diseases. Open Chemistry, 2021, 19, 1108-1115.	1.0	3
68	An Ionic Liquid-Based Next Generation Double Base Propellant Stabilizer. , 2010, , .		2
69	Reactivity of N-cyanoalkyl-substituted imidazolium halide salts by simple elution through an azide anion exchange resin. Science China Chemistry, 2012, 55, 1683-1687.	4.2	2
70	An effect of choline lactate based low transition temperature mixtures on the lipase catalytic properties. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112518.	2.5	2
71	1-Butyl-3-methylimidazolium 3,5-Dinitro-1,2,4-triazolate: A Novel Ionic Liquid Containing a Rigid, Planar Energetic Anion. ChemInform, 2005, 36, no.	0.1	1
72	Zinc-assisted synthesis of imidazolium-tetrazolate bi-heterocyclic zwitterions with variable alkyl bridge length. Science China Chemistry, 2012, 55, 1620-1626.	4.2	1

0

#	Article	IF	CITATIONS
73	Solid-liquid phase behavior of mixtures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amides involving long alkyl side chains. Journal of Molecular Liquids, 2021, 339, 116805.	2.3	1

Polymerizable ionic liquids for microstructures fabrication. , 2019, , .