Ivo A Telley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9309390/publications.pdf

Version: 2024-02-01

566801 642321 1,769 24 15 23 citations h-index g-index papers 32 32 32 1869 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Minimal Midzone Protein Module Controls Formation and Length of Antiparallel Microtubule Overlaps. Cell, 2010, 142, 420-432.	13.5	282
2	CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. Journal of Cell Biology, 2008, 183, 1223-1233.	2.3	269
3	Directional Switching of the Kinesin Cin8 Through Motor Coupling. Science, 2011, 332, 94-99.	6.0	163
4	Half-Sarcomere Dynamics in Myofibrils during Activation and Relaxation Studied by Tracking Fluorescent Markers. Biophysical Journal, 2006, 90, 514-530.	0.2	115
5	Obstacles on the Microtubule Reduce the Processivity of Kinesin-1 in a Minimal In Vitro System and in Cell Extract. Biophysical Journal, 2009, 96, 3341-3353.	0.2	114
6	Fluorescence Microscopy Assays on Chemically Functionalized Surfaces for Quantitative Imaging of Microtubule, Motor, and +TIP Dynamics. Methods in Cell Biology, 2010, 95, 555-580.	0.5	108
7	Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Reports, 2008, 9, 1121-1127.	2.0	105
8	Drosophila Ensconsin Promotes Productive Recruitment of Kinesin-1 to Microtubules. Developmental Cell, 2008, 15, 866-876.	3.1	91
9	Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. European Journal of Clinical Investigation, 2003, 33, 412-419.	1.7	90
10	Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no â€~sarcomere popping'. Journal of Physiology, 2006, 573, 173-185.	1.3	90
11	Aster migration determines the length scale of nuclear separation in the <i>Drosophila</i> syncytial embryo. Journal of Cell Biology, 2012, 197, 887-895.	2.3	88
12	Sarcomere dynamics during muscular contraction and their implications to muscle function. Journal of Muscle Research and Cell Motility, 2007, 28, 89-104.	0.9	40
13	Robust gap repair in the contractile ring ensures timely completion of cytokinesis. Journal of Cell Biology, 2016, 215, 789-799.	2.3	35
14	A multisegmental cross-bridge kinetics model of the myofibril. Journal of Theoretical Biology, 2009, 259, 714-726.	0.8	30
15	Reconstitution and Quantification of Dynamic Microtubule End Tracking In Vitro Using TIRF Microscopy. Methods in Molecular Biology, 2011, 777, 127-145.	0.4	24
16	Plk4 triggers autonomous de novo centriole biogenesis and maturation. Journal of Cell Biology, 2021, 220, .	2.3	22
17	Cytoskeletal mechanics and dynamics in the <i>Drosophila</i> syncytial embryo. Journal of Cell Science, 2021, 134, .	1,2	18
18	A single Drosophila embryo extract for the study of mitosis ex vivo. Nature Protocols, 2013, 8, 310-324.	5.5	16

#	Article	IF	CITATIONS
19	Aster repulsion drives short-ranged ordering in the <i>Drosophila</i> syncytial blastoderm. Development (Cambridge), 2022, 149, .	1.2	16
20	Nuclear positioning during development: Pushing, pulling and flowing. Seminars in Cell and Developmental Biology, 2021, 120, 10-21.	2.3	15
21	Astral microtubule cross-linking safeguards uniform nuclear distribution in the <i>Drosophila</i> syncytium. Journal of Cell Biology, 2022, 221, .	2.3	14
22	A cell-free system of Drosophila egg explants supporting native mitotic cycles. Methods in Cell Biology, 2018, 144, 233-257.	0.5	10
23	Reply from I. A. Telley, R. Stehle, K. W. Ranatunga, G. Pfitzer, E. St $\tilde{A}^{1}\!\!/\!\!4$ ssi and J. Denoth. Journal of Physiology, 2006, 574, 629-630.	1.3	1
24	Astral Microtubule Crosslinking by Feo Safeguards Uniform Nuclear DistributionÂln TheÂDrosophilaÂSyncytium. SSRN Electronic Journal, 0, , .	0.4	1