
Cheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9309261/publications.pdf Version: 2024-02-01

CHENC WANC

#	Article	IF	CITATIONS
1	Impact of Combined Assimilation of Wind Profiler and Doppler Radar Data on a Convective-Scale Cycling Forecasting System. Monthly Weather Review, 2022, 150, 431-450.	1.4	8
2	The sub-cellular distribution of Zn and trace elements in the wheat grain: in situ imaging using a NanoSIMS. Cereal Research Communications, 2022, 50, 1127-1135.	1.6	1
3	Intensive Care Unit False Alarm Identification Based on Convolution Neural Network. IEEE Access, 2021, 9, 81841-81854.	4.2	2
4	Photocatalytic Hydrogen Production by Stable CsPbBr ₃ @PANI Nanoparticles in Aqueous Solution. ChemCatChem, 2021, 13, 1711-1716.	3.7	15
5	Estimating the contribution of atmosphere on heavy metals accumulation in the aboveground wheat tissues induced by anthropogenic forcing. Environmental Research, 2020, 189, 109955.	7.5	24
6	Characteristics of Fengyun-4A Satellite Atmospheric Motion Vectors and Their Impacts on Data Assimilation. Advances in Atmospheric Sciences, 2020, 37, 1222-1238.	4.3	11
7	The vertical migration and speciation of the Pb in the paddy soil: A case study of the Yangtze River Delta, China. Environmental Research, 2019, 179, 108741.	7.5	12
8	Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment. Ecotoxicology and Environmental Safety, 2018, 153, 68-77.	6.0	7
9	Aqueous Hg(II) immobilization by chitosan stabilized magnetic iron sulfide nanoparticles. Science of the Total Environment, 2018, 621, 1074-1083.	8.0	75
10	Atmospheric contribution to boron enrichment in aboveground wheat tissues. Chemosphere, 2017, 174, 655-663.	8.2	9
11	Characterizing Se transfer in the soil-crop systems under field condition. Plant and Soil, 2017, 415, 535-548.	3.7	24
12	Historical records and sources of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediment from a representative plateau lake, China. Chemosphere, 2017, 173, 78-88.	8.2	63
13	Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Scientific Reports, 2017, 7, 40709.	3.3	22
14	Temporal–spatial variation and source apportionment of soil heavy metals in the representative river–alluviation depositional system. Environmental Pollution, 2016, 216, 18-26.	7.5	71
15	Characteristics of heavy metal transfer and their influencing factors in different soil–crop systems of the industrialization region, China. Ecotoxicology and Environmental Safety, 2016, 126, 193-201.	6.0	159
16	An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability. Scientific Reports, 2015, 5, 12735.	3.3	66
17	Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China. Catena, 2014, 119, 52-60.	5.0	92
18	The influences of soil properties on Cu and Zn availability in soil and their transfer to wheat (Triticum aestivum L.) in the Yangtze River delta region, China. Geoderma, 2013, 193-194, 131-139.	5.1	42

CHENG WANG

#	Article	IF	CITATIONS
19	Characteristics of lead geochemistry and the mobility of Pb isotopes in the system of pedogenic rock–pedosphere–irrigated riverwater–cereal–atmosphere from the Yangtze River delta region, China. Chemosphere, 2013, 93, 1927-1935.	8.2	21
20	The contamination and transfer of potentially toxic elements and their relations with iron, vanadium and titanium in the soil-rice system from Suzhou region, China. Environmental Earth Sciences, 2013, 68, 13-21.	2.7	12
21	The transfer of fluorine in the soil–wheat system and the principal source of fluorine in wheat under actual field conditions. Field Crops Research, 2012, 137, 163-169.	5.1	27
22	Accumulation and translocation of heavy metals in the canola (Brassica napus L.)—soil system in Yangtze River Delta, China. Plant and Soil, 2012, 353, 33-45.	3.7	50
23	Effects of Soil Properties on the Transfer of Cadmium from Soil to Wheat in the Yangtze River Delta Region, China—a Typical Industry–Agriculture Transition Area. Biological Trace Element Research, 2012, 148, 264-274.	3.5	49