List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9308992/publications.pdf Version: 2024-02-01

		117571	168321
133	3,712	34	53
papers	citations	h-index	g-index
133	133	133	468
all docs	docs citations	times ranked	citing authors
133 all docs	133 docs citations	133 times ranked	468 citing authors

Υλκιιά Υποιριά

#	Article	IF	CITATIONS
1	Family of optical solitons for perturbed Fokas–Lenells equation. Optik, 2022, 249, 168224.	1.4	28
2	Cubic–quartic solitons in couplers with optical metamaterials having triple-power law nonlinearity (sequel to polynomial law). Optik, 2022, 250, 168264.	1.4	1
3	Optical solitons in the Sasa�Satsuma model with multiplicative noise via Ito calculus. Ukrainian Journal of Physical Optics, 2022, 23, 9-14.	9.7	122
4	Bright solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik, 2022, 254, 168612.	1.4	11
5	Cubic–Quartic Optical Soliton Perturbation with Differential Group Delay for the Lakshmanan–Porsezian–Daniel Model by Lie Symmetry. Symmetry, 2022, 14, 224.	1.1	8
6	Numerical Simulation of Cubic-Quartic Optical Solitons with Perturbed Fokas–Lenells Equation Using Improved Adomian Decomposition Algorithm. Mathematics, 2022, 10, 138.	1.1	8
7	Dark solitons with anti-cubic and generalized anti-cubic nonlinearities in an optical fiber. Optik, 2022, 255, 168641.	1.4	13
8	Sequel to "cubicâ€quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov's methodâ€. IET Optoelectronics, 2022, 16, 149-159.	1.8	6
9	Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation. Mathematics, 2022, 10, 987.	1.1	9
10	Highly dispersive optical solitons and conservation laws in absence of self–phase modulation with new Kudryashov's approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 431, 128001.	0.9	14
11	Shallow Water Waves and Conservation Laws with Dispersion Triplet. Applied Sciences (Switzerland), 2022, 12, 3647.	1.3	4
12	Optical solitons for Biswas–Arshed equation with multiplicative noise via Itô calculus using three integration algorithms. Optik, 2022, 258, 168847.	1.4	13
13	Optical solitons with Manakov equation having multiplicative white noise by Itô Calculus. Optik, 2022, 262, 169233.	1.4	2
14	Optical solitons with generalized anti–cubic nonlinearity having multiplicative white noise by Itô Calculus. Optik, 2022, 262, 169262.	1.4	1
15	Highly Dispersive Optical Solitons in Birefringent Fibers with Polynomial Law of Nonlinear Refractive Index by Laplace–Adomian Decomposition. Mathematics, 2022, 10, 1589.	1.1	5
16	Cubic–quartic optical solitons in birefringent fibers with Sasa–Satsuma equation. Optik, 2022, 261, 169230.	1.4	5
17	Cubic–quartic optical soliton perturbation with Fokas–Lenells equation having maximum intensity. Optik, 2022, 264, 169336.	1.4	9
18	Cubic–quartic optical solitons in fiber Bragg gratings with anti-cubic nonlinearity using the modified extended direct algebraic method. Optik, 2022, 264, 169347.	1.4	9

#	Article	IF	CITATIONS
19	Optical solitons having Kudryashov's self-phase modulation with multiplicative white noise via ltô Calculus using new mapping approach. Optik, 2022, 264, 169369.	1.4	6
20	Dispersive optical solitons with Schrödinger–Hirota model having multiplicative white noise via ltô Calculus. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 445, 128268.	0.9	15
21	Sequel to "Quasi-monochromatic dynamical system of cubic–quartic optical solitons with Kerr law of nonlinear refractive index―(Power law). Optik, 2022, 267, 169623.	1.4	1
22	Quasi-monochromatic dynamical system of cubic–quartic optical solitons with Kerr law of nonlinear refractive index. Optik, 2022, 267, 169622.	1.4	1
23	Optical solitons with Biswas–Arshed equation by F-expansion method. Optik, 2021, 227, 165788.	1.4	28
24	Cubic–quartic optical soliton perturbation and conservation laws with generalized Kudryashov's form of refractive index. Journal of Optics (India), 2021, 50, 354-360.	0.8	16
25	Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-Gordon equation approach. Journal of Optics (India), 2021, 50, 322-329.	0.8	38
26	Optical solitons in birefringent fibers with Biswas–Arshed equation by sine–Gordon equation method. Optik, 2021, 227, 165960.	1.4	7
27	Optical solitons and conservation law with Kudryashov's form of arbitrary refractive index. Journal of Optics (India), 2021, 50, 542-547.	0.8	10
28	Cubic–quartic optical soliton perturbation with Kudryashov's law of refractive index having quadrupled–power law and dual form of generalized nonlocal nonlinearity by sine-Gordon equation approach. Journal of Optics (India), 2021, 50, 593-599.	0.8	9
29	Optical soliton perturbation with Kudryashov's law of arbitrary refractive index. Journal of Optics (India), 2021, 50, 245-252.	0.8	10
30	Optical solitons for the perturbed Biswas-Milovic equation with Kudryashov's law of refractive index by the unified auxiliary equation method. Optik, 2021, 230, 166286.	1.4	49
31	Solitons and Other Solutions for the Nonlinear Convection–Diffusion–Reaction Equation with Power-Law Nonlinearity by the Extended Simplest Equation Method. Computational Mathematics and Modeling, 2021, 32, 235-252.	0.2	1
32	Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model. Optik, 2021, 233, 166385.	1.4	16
33	Cubic–quartic optical soliton perturbation in polarization-preserving fibers with Fokas–Lenells equation. Optik, 2021, 234, 166543.	1.4	19
34	Gray optical dips of Kundu-Mukherjee-Naskar model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 401, 127341.	0.9	9
35	Optical solitons in fiber Bragg gratings with dispersive reflectivity by sine-Gordon equation approach. Optik, 2021, 237, 166684.	1.4	15
36	Cubic–quartic optical soliton perturbation with Fokas–Lenells equation by sine–Gordon equation approach. Results in Physics, 2021, 26, 104409.	2.0	13

#	Article	IF	CITATIONS
37	Highly dispersive optical solitons and conservation laws with Kudryashov's sextic power-law of nonlinear refractive index. Optik, 2021, 240, 166915.	1.4	3
38	Optical soliton perturbation and conservation law with Kudryashov's refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity. Optik, 2021, 240, 166966.	1.4	8
39	Optical soliton perturbation with Kudryashov's generalized nonlinear refractive index. Optik, 2021, 240, 166620.	1.4	18
40	Cubic–quartic polarized optical solitons and conservation laws for perturbed Fokas–Lenells model. Journal of Nonlinear Optical Physics and Materials, 2021, 30, .	1.1	6
41	Optical solitons in fiber Bragg gratings with Radhakrishnan–Kundu–Lakshmanan equation using two integration schemes. Optik, 2021, 245, 167635.	1.4	14
42	Straddled optical solitons for cubic–quartic Lakshmanan–Porsezian–Daniel model by Lie symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 417, 127706.	0.9	12
43	Cubic–quartic optical solitons with Bragg gratings having anti-cubic nonlinearity and dispersive reflectivity. Optik, 2021, 247, 167876.	1.4	1
44	Cubic–quartic solitons in couplers with optical metamaterials having parabolic law nonlinearity. Optik, 2021, 247, 167960.	1.4	3
45	Cubic–quartic solitons in couplers with optical metamaterials having dual-power law of nonlinearity. Optik, 2021, 247, 167969.	1.4	2
46	Cubic–quartic solitons in couplers with optical metamaterials having quadratic–cubic law of nonlinearity. Optik, 2021, , 168065.	1.4	1
47	Cubic–quartic solitons in couplers with optical metamaterials having polynomial law of nonlinearity. Optik, 2021, 248, 168087.	1.4	7
48	Highly Dispersive Optical Solitons with Complex Ginzburg–Landau Equation Having Six Nonlinear Forms. Mathematics, 2021, 9, 3270.	1.1	20
49	Optical solitons in birefringent fibers with quadratic–cubic refractive index by ϕ6–model expansion. Optik, 2020, 202, 163620.	1.4	12
50	Optical pulses with Kundu-Mukherjee-Naskar model in fiber communication systems. Chinese Journal of Physics, 2020, 64, 183-193.	2.0	47
51	Highly dispersive optical soliton perturbation with quadratic–cubic refractive index by semi–inverse variational principle. Optik, 2020, 206, 163621.	1.4	14
52	Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results in Physics, 2020, 16, 102913.	2.0	98
53	Optical solitons with complex Ginzburg-Landau equation having a plethora of nonlinear forms with a couple of improved integration norms. Optik, 2020, 207, 163804.	1.4	27
54	Optical solitons with differential group delay for complex Ginzburg–Landau equation. Results in Physics, 2020, 16, 102888.	2.0	12

YAKUP YILDIRIM

#	Article	IF	CITATIONS
55	Optical solitons with differential group delay for complex Ginzburg–Landau equation having Kerr and parabolic laws of refractive index. Optik, 2020, 202, 163737.	1.4	14
56	Chirped and chirp-free optical solitons having generalized anti-cubic nonlinearity with a few cutting-edge integration technologies. Optik, 2020, 206, 163745.	1.4	14
57	Chirped and chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having quadratic-cubic nonlinearity by sub-ODE approach. Optik, 2020, 203, 163993.	1.4	25
58	Optical soliton molecules of Lakshmanan–Porsezian–Daniel model in birefringent fibers by trial equation technique. Optik, 2020, 203, 162690.	1.4	14
59	Cubic–quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index. Optik, 2020, 203, 163885.	1.4	18
60	Optical solitons in fiber Bragg gratings via modified simple equation. Optik, 2020, 203, 163886.	1.4	39
61	Optical solitons with Biswas–Arshed equation by sine–Gordon equation method. Optik, 2020, 223, 165622.	1.4	12
62	Pure-cubic optical soliton perturbation with full nonlinearity. Optik, 2020, 222, 165394.	1.4	19
63	Optical solitons with Kudryashov's model by a range of integration norms. Chinese Journal of Physics, 2020, 66, 660-672.	2.0	19
64	Highly dispersive optical solitons in birefringent fibers with four forms of nonlinear refractive index by three prolific integration schemes. Optik, 2020, 220, 165039.	1.4	17
65	Optical solitons in birefringent fibers with Radhakrishnan–Kundu–Lakshmanan equation by a couple of strategically sound integration architectures. Chinese Journal of Physics, 2020, 65, 341-354.	2.0	19
66	Optical solitons in birefringent fibers for Radhakrishnan–Kundu–Lakshmanan equation with five prolific integration norms. Optik, 2020, 208, 164550.	1.4	28
67	Optical soliton perturbation with Chen–Lee–Liu equation. Optik, 2020, 220, 165177.	1.4	48
68	Optical solitons with Sasa–Satsuma equation. Optik, 2020, 219, 165183.	1.4	9
69	Optical solitons with generalized anti-cubic nonlinearity by Lie symmetry. Optik, 2020, 206, 163638.	1.4	27
70	Optical solitons in fiber Bragg gratings with generalized anti-cubic nonlinearity by extended auxiliary equation. Chinese Journal of Physics, 2020, 65, 613-628.	2.0	21
71	Optical solitons of Gerdjikov–Ivanov equation with four-wave mixing terms in birefringent fibers using trial equation scheme. Optik, 2019, 182, 1163-1169.	1.4	7
72	Extended Transformed Rational Function Method to Nonlinear Evolution Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2019, 20, 691-701.	0.4	13

YAKUP YILDIRIM

#	Article	IF	CITATIONS
73	Chirped and chirp-free solitons in optical fiber Bragg gratings with dispersive reflectivity having parabolic law nonlinearity by Jacobi's elliptic function. Results in Physics, 2019, 15, 102784.	2.0	21
74	Optical solitons in DWDM system with trial equation integration architecture. Optik, 2019, 182, 211-218.	1.4	10
75	Optical solitons to Schrödinger–Hirota equation in DWDM system with trial equation integration architecture. Optik, 2019, 182, 275-281.	1.4	10
76	Complexiton solutions and soliton solutions: \$\$(2+1)\$\$ (2 + 1) -dimensional Date–Jimbo–Kashiwara–Miwa equation. Pramana - Journal of Physics, 2019, 92, 1.	0.9	24
77	Optical solitons to Sasa-Satsuma model with modified simple equation approach. Optik, 2019, 184, 271-276.	1.4	35
78	Optical soliton molecules of Manakov model by trial equation technique. Optik, 2019, 185, 1146-1151.	1.4	26
79	Optical soliton molecules of Manakov model by modified simple equation technique. Optik, 2019, 185, 1182-1188.	1.4	16
80	Optical solitons to Kundu–Mukherjee–Naskar model in birefringent fibers with trial equation approach. Optik, 2019, 183, 1026-1031.	1.4	30
81	Sub pico-second pulses in mono-mode optical fibers with Triki-Biswas model using trial equation architecture. Optik, 2019, 183, 463-466.	1.4	33
82	Optical solitons to Kundu–Mukherjee–Naskar model in birefringent fibers with modified simple equation approach. Optik, 2019, 184, 121-127.	1.4	25
83	Optical solitons to Biswas-Arshed model in birefringent fibers using modified simple equation architecture. Optik, 2019, 182, 1149-1162.	1.4	43
84	Optical solitons to Kundu–Mukherjee–Naskar model with modified simple equation approach. Optik, 2019, 184, 247-252.	1.4	48
85	Optical solitons to Chen–Lee–Liu model in birefringent fibers with modified simple equation approach. Optik, 2019, 183, 612-618.	1.4	15
86	Optical solitons in DWDM technology with four-wave mixing by trial equation integration architecture. Optik, 2019, 182, 625-632.	1.4	14
87	Optical solitons to Chen–Lee–Liu model with trial equation approach. Optik, 2019, 183, 849-853.	1.4	23
88	Optical solitons to Chen–Lee–Liu model in birefringent fibers with trial equation approach. Optik, 2019, 183, 881-886.	1.4	15
89	Optical solitons to Chen–Lee–Liu model with modified simple equation approach. Optik, 2019, 183, 792-796.	1.4	11
90	Optical solitons to Kundu–Mukherjee–Naskar model with trial equation approach. Optik, 2019, 183, 1061-1065.	1.4	37

#	Article	IF	CITATIONS
91	Optical solitons to Sasa–Satsuma model in birefringent fibers with trial equation approach. Optik, 2019, 185, 269-274.	1.4	14
92	Optical solitons to Sasa-Satsuma model in birefringent fibers with modified simple equation approach. Optik, 2019, 184, 197-204.	1.4	13
93	Optical solitons to Sasa–Satsuma model with trial equation approach. Optik, 2019, 184, 70-74.	1.4	50
94	Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique. Optik, 2019, 182, 810-820.	1.4	46
95	Optical solitons to Gerdjikov–Ivanov equation in birefringent fibers with trial equation integration architecture. Optik, 2019, 182, 349-355.	1.4	12
96	Optical solitons of Biswas–Arshed equation by trial equation technique. Optik, 2019, 182, 876-883.	1.4	60
97	Optical solitons to Schrödinger–Hirota equation in DWDM system with modified simple equation integration architecture. Optik, 2019, 182, 694-701.	1.4	7
98	Bright, dark and singular optical solitons to Kundu–Eckhaus equation having four-wave mixing in the context of birefringent fibers by using of trial equation methodology. Optik, 2019, 182, 393-399.	1.4	14
99	Optical solitons of Biswas-Arshed equation by modified simple equation technique. Optik, 2019, 182, 986-994.	1.4	47
100	Soliton solutions to the non-local Boussinesq equation by multiple exp-function scheme and extended Kudryashov's approach. Pramana - Journal of Physics, 2019, 92, 1.	0.9	9
101	Optical solitons to Kundu–Eckhaus equation in the context of birefringent fibers by using of trial equation methodology. Optik, 2019, 182, 105-109.	1.4	10
102	Optical solitons in birefringent fibers with weak non-local nonlinearity using two forms of integration architecture. Optik, 2019, 178, 669-680.	1.4	14
103	Optical soliton molecules in birefringent fibers having weak non-local nonlinearity and four-wave mixing with a couple of strategic integration architectures. Optik, 2019, 179, 927-940.	1.4	14
104	Optical solitons of Gerdjikov–Ivanov equation in birefringent fibers with modified simple equation scheme. Optik, 2019, 182, 424-432.	1.4	5
105	Solitons for perturbed Gerdjikov–Ivanov equation in optical fibers and PCF by extended Kudryashov's method. Optical and Quantum Electronics, 2018, 50, 1.	1.5	48
106	Dispersive optical solitons with Schrödinger–Hirota model by trial equation method. Optik, 2018, 162, 35-41.	1.4	47
107	Dispersive optical solitons with differential group delay by a couple of integration schemes. Optik, 2018, 162, 108-120.	1.4	17
108	Optical solitons with differential group delay and four-wave mixing using two integration procedures. Optik, 2018, 167, 170-188.	1.4	19

#	Article	IF	CITATIONS
109	Sub pico-second pulses in mono-mode optical fibers with Kaup–Newell equation by a couple of integration schemes. Optik, 2018, 167, 121-128.	1.4	130
110	Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method. Optik, 2018, 168, 432-439.	1.4	63
111	Optical soliton perturbation with resonant nonlinear Schrödinger's equation having full nonlinearity by modified simple equation method. Optik, 2018, 160, 33-43.	1.4	51
112	Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik, 2018, 160, 24-32.	1.4	161
113	Optical soliton perturbation with complex Ginzburg–Landau equation using trial solution approach. Optik, 2018, 160, 44-60.	1.4	47
114	Optical solitons with differential group delay by trial equation method. Optik, 2018, 160, 116-123.	1.4	24
115	Optical soliton perturbation with full nonlinearity for Gerdjikov–Ivanov equation by trial equation method. Optik, 2018, 157, 1214-1218.	1.4	43
116	Optical soliton perturbation with Gerdjikov–Ivanov equation by modified simple equation method. Optik, 2018, 157, 1235-1240.	1.4	52
117	Optical soliton perturbation with full nonlinearity by trial equation method. Optik, 2018, 157, 1366-1375.	1.4	36
118	Optical soliton perturbation with full nonlinearity for Kundu–Eckhaus equation by modified simple equation method. Optik, 2018, 157, 1376-1380.	1.4	82
119	Optical soliton perturbation for complex Ginzburg–Landau equation with modified simple equation method. Optik, 2018, 158, 399-415.	1.4	80
120	New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method. Results in Physics, 2018, 9, 1666-1672.	2.0	71
121	Optical solitons with differential group delay for coupled Fokas–Lenells equation using two integration schemes. Optik, 2018, 165, 74-86.	1.4	121
122	Optical soliton perturbation for Radhakrishnan–Kundu–Lakshmanan equation with a couple of integration schemes. Optik, 2018, 163, 126-136.	1.4	128
123	Optical solitons and conservation law of Kundu–Eckhaus equation. Optik, 2018, 154, 551-557.	1.4	139
124	Perturbed optical solitons with spatio-temporal dispersion in (2 + 1)-dimensions by extended Kudryashov method. Optik, 2018, 158, 1-14.	1.4	39
125	Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms. Chinese Journal of Physics, 2018, 56, 1990-1998.	2.0	37
126	Optical soliton solutions to Fokas-lenells equation using some different methods. Optik, 2018, 173, 21-31.	1.4	132

#	Article	IF	CITATIONS
127	An extended Korteweg–de Vries equation: multi-soliton solutions and conservation laws. Nonlinear Dynamics, 2017, 90, 1571-1579.	2.7	14
128	Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF. Optik, 2017, 148, 209-214.	1.4	72
129	Nonlinear Schrödinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual power law media: A novel extended Kudryashov's algorithm and soliton solutions. Results in Physics, 2017, 7, 3116-3123.	2.0	22
130	Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method. Superlattices and Microstructures, 2017, 111, 487-498.	1.4	52
131	A multiple exp-function method for the three model equations of shallow water waves. Nonlinear Dynamics, 2017, 89, 2291-2297.	2.7	30
132	First integrals and analytical solutions of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. Pramana - Journal of Physics, 2016, 87, 1.	0.9	3
133	A procedure on the first integrals of second-order nonlinear ordinary differential equations. European Physical Journal Plus, 2015, 130, 1.	1.2	2