Paolo Gelosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9308604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex-Specific Features of Microglia from Adult Mice. Cell Reports, 2018, 23, 3501-3511.	2.9	417
2	The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO Journal, 2006, 25, 4615-4627.	3.5	380
3	The Recently Identified P2Y-Like Receptor GPR17 Is a Sensor of Brain Damage and a New Target for Brain Repair. PLoS ONE, 2008, 3, e3579.	1.1	192
4	Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. Journal of Hypertension, 2009, 27, 2444-2451.	0.3	113
5	Statins: Multiple Mechanisms of Action in the Ischemic Brain. Neuroscientist, 2007, 13, 208-213.	2.6	91
6	Bovine Serum Albuminâ€Based Magnetic Nanocarrier for MRI Diagnosis and Hyperthermic Therapy: A Potential Theranostic Approach Against Cancer. Small, 2010, 6, 366-370.	5.2	88
7	Pharmacokinetic drug interactions of the non-vitamin K antagonist oral anticoagulants (NOACs). Pharmacological Research, 2018, 135, 60-79.	3.1	81
8	Analysis of pathological events at the onset of brain damage in stroke-prone rats: A proteomics and magnetic resonance imaging approach. Journal of Neuroscience Research, 2004, 78, 115-122.	1.3	78
9	The Interleukin-8 (IL-8/CXCL8) Receptor Inhibitor Reparixin Improves Neurological Deficits and Reduces Long-term Inflammation in Permanent and Transient Cerebral Ischemia in Rats. Molecular Medicine, 2007, 13, 125-133.	1.9	77
10	Rosuvastatin, but not Simvastatin, Provides End-Organ Protection in Stroke-Prone Rats by Antiinflammatory Effects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 598-603.	1.1	74
11	The role of oligodendrocyte precursor cells expressing the GPR17 receptor in brain remodeling after stroke. Cell Death and Disease, 2017, 8, e2871-e2871.	2.7	72
12	Microglia is a Key Player in the Reduction of Stroke Damage Promoted by the New Antithrombotic Agent Ticagrelor. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 979-988.	2.4	71
13	Rosuvastatin Treatment Prevents Progressive Kidney Inflammation and Fibrosis in Stroke-Prone Rats. American Journal of Pathology, 2007, 170, 1165-1177.	1.9	70
14	Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment. Neurobiology of Disease, 2006, 22, 445-451.	2.1	66
15	GPR17 expressing NG2â€Glia: Oligodendrocyte progenitors serving as a reserve pool after injury. Glia, 2016, 64, 287-299.	2.5	66
16	Anti-Inflammatory Effects of AT1 Receptor Blockade Provide End-Organ Protection in Stroke-Prone Rats Independently from Blood Pressure Fall. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 989-995.	1.3	59
17	Differential Modulation of Uncoupling Protein 2 in Kidneys of Stroke-Prone Spontaneously Hypertensive Rats Under High-Salt/Low-Potassium Diet. Hypertension, 2013, 61, 534-541.	1.3	57
18	Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediators of Inflammation, 2017, 2017, 1-13.	1.4	56

PAOLO GELOSA

#	Article	IF	CITATIONS
19	Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Molecular Therapy, 2021, 29, 1439-1458.	3.7	55
20	Neuroprotective Effect of Simvastatin in Stroke: A Comparison Between Adult and Neonatal Rat Models of Cerebral Ischemia. NeuroToxicology, 2005, 26, 929-933.	1.4	51
21	Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics, 2018, 8, 5400-5418.	4.6	48
22	Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediators of Inflammation, 2017, 2017, 1-15.	1.4	43
23	Pentoxifylline Prevents Spontaneous Brain Ischemia in Stroke-Prone Rats. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 890-895.	1.3	40
24	Treatment with LXR agonists after focal cerebral ischemia prevents brain damage. FEBS Letters, 2008, 582, 3396-3400.	1.3	40
25	Peroxisome Proliferator-Activated Receptor α Agonism Prevents Renal Damage and the Oxidative Stress and Inflammatory Processes Affecting the Brains of Stroke-Prone Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 324-331.	1.3	39
26	Proepileptic Influence of a Focal Vascular Lesion Affecting Entorhinal Cortex-CA3 Connections After Status Epilepticus. Journal of Neuropathology and Experimental Neurology, 2008, 67, 687-701.	0.9	38
27	Differential local tissue permissiveness influences the final fate of <scp>GPR</scp> 17â€expressing oligodendrocyte precursors in two distinct models of demyelination. Glia, 2018, 66, 1118-1130.	2.5	37
28	Improvement of fiber connectivity and functional recovery after stroke by montelukast, an available and safe anti-asthmatic drug. Pharmacological Research, 2019, 142, 223-236.	3.1	35
29	Terutroban, a Thromboxane/Prostaglandin Endoperoxide Receptor Antagonist, Increases Survival in Stroke-Prone Rats by Preventing Systemic Inflammation and Endothelial Dysfunction: Comparison with Aspirin and Rosuvastatin. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 199-205.	1.3	33
30	Protective effects of Brassica oleracea sprouts extract toward renal damage in high-salt-fed SHRSP. Journal of Hypertension, 2015, 33, 1465-1479.	0.3	29
31	Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat. Cell Death and Disease, 2017, 8, e2891-e2891.	2.7	29
32	Gender differences in endothelial function and inflammatory markers along the occurrence of pathological events in stroke-prone rats. Experimental and Molecular Pathology, 2007, 82, 33-41.	0.9	28
33	Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. Journal of Colloid and Interface Science, 2021, 582, 678-700.	5.0	27
34	Terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, prevents hypertensive vascular hypertrophy and fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H762-H768.	1.5	24
35	Anti-inflammatory properties of drugs acting on the renin-angiotensin system. Drugs of Today, 2005, 41, 609.	0.7	22
36	Repurposing of drugs approved for cardiovascular diseases: Opportunity or mirage?. Biochemical Pharmacology, 2020, 177, 113895.	2.0	18

PAOLO GELOSA

#	Article	IF	CITATIONS
37	A differential expression of uncoupling protein-2 associates with renal damage in stroke-resistant spontaneously hypertensive rat/stroke-prone spontaneously hypertensive rat-derived stroke congenic lines. Journal of Hypertension, 2017, 35, 1857-1871.	0.3	14
38	Fenofibrate attenuates cardiac and renal alterations in young salt-loaded spontaneously hypertensive stroke-prone rats through mitochondrial protection. Journal of Hypertension, 2018, 36, 1129-1146.	0.3	14
39	Impact of angiotensin-converting enzyme inhibition on platelet tissue factor expression in stroke-prone rats. Journal of Hypertension, 2018, 36, 1360-1371.	0.3	10
40	Drug repurposing in cardiovascular diseases: Opportunity or hopeless dream?. Biochemical Pharmacology, 2020, 177, 113894.	2.0	8
41	Nuclear Receptors in Myocardial and Cerebral Ischemia—Mechanisms of Action and Therapeutic Strategies. International Journal of Molecular Sciences, 2021, 22, 12326.	1.8	8
42	Altered iron homeostasis in an animal model of hypertensive nephropathy. Journal of Hypertension, 2013, 31, 2259-2269.	0.3	7
43	Analysis of rosuvatatin by imaging mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 3483-3487.	0.7	6
44	Vascular and parenchymal lesions along with enhanced neurogenesis characterize the brain of asymptomatic stroke-prone spontaneous hypertensive rats. Journal of Hypertension, 2013, 31, 1618-1628.	0.3	5
45	S 35171 exerts protective effects in spontaneously hypertensive stroke-prone rats by preserving mitochondrial function. European Journal of Pharmacology, 2009, 604, 117-124.	1.7	3
46	â€~Les liaisons dangereuses'. Journal of Hypertension, 2012, 30, 1101-1102.	0.3	1
47	The hard way to acute stroke treatment. Journal of Hypertension, 2008, 26, 2274-2275.	0.3	0
48	Is the SHRPS Strain a Suitable Model of Spontaneous CADASIL?. Journal of Molecular Neuroscience, 2012, 46, 427-430.	1.1	0