List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9308563/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compliant actuator designs. IEEE Robotics and Automation Magazine, 2009, 16, 81-94.	2.0	672
2	Self-healing soft pneumatic robots. Science Robotics, 2017, 2, .	17.6	359
3	MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robotics and Autonomous Systems, 2007, 55, 761-768.	5.1	334
4	Variable Stiffness Actuators: Review on Design and Components. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2418-2430.	5.8	293
5	SRD5A3 Is Required for Converting Polyprenol to Dolichol and Is Mutated in a Congenital Glycosylation Disorder. Cell, 2010, 142, 203-217.	28.9	253
6	A light-weight active orthosis for hip movement assistance. Robotics and Autonomous Systems, 2015, 73, 123-134.	5.1	210
7	Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan. American Journal of Human Genetics, 2013, 93, 29-41.	6.2	197
8	Deficiency of Dol-P-Man Synthase Subunit DPM3 Bridges the Congenital Disorders of Glycosylation with the Dystroglycanopathies. American Journal of Human Genetics, 2009, 85, 76-86.	6.2	178
9	The Concept and Design of Pleated Pneumatic Artificial Muscles. International Journal of Fluid Power, 2001, 2, 41-50.	0.7	177
10	Variable stiffness actuators: The user's point of view. International Journal of Robotics Research, 2015, 34, 727-743.	8.5	160
11	The Pneumatic Biped ?Lucy? Actuated with Pleated Pneumatic Artificial Muscles. Autonomous Robots, 2005, 18, 201-213.	4.8	153
12	Using the social robot probo as a social story telling agent for children with ASD. Interaction Studies, 2012, 13, 348-372.	0.6	152
13	Expressing Emotions with the Social Robot Probo. International Journal of Social Robotics, 2010, 2, 377-389.	4.6	131
14	Autosomal Recessive Dilated Cardiomyopathy due to DOLK Mutations Results from Abnormal Dystroglycan O-Mannosylation. PLoS Genetics, 2011, 7, e1002427.	3.5	130
15	Design and Validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 138-148.	4.9	126
16	DPM2 DG: A muscular dystrophy–dystroglycanopathy syndrome with severe epilepsy. Annals of Neurology, 2012, 72, 550-558.	5.3	121
17	Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams. Frontiers in Robotics and Al, 2018, 5, 72.	3.2	120
18	Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis. Sensors, 2014, 14, 2776-2794.	3.8	107

#	Article	IF	CITATIONS
19	Third–Generation Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle. Advanced Robotics, 2012, 26, 1205-1227.	1.8	93
20	International clinical guidelines for the management of phosphomannomutase 2 ongenital disorders of glycosylation: Diagnosis, treatment and follow up. Journal of Inherited Metabolic Disease, 2019, 42, 5-28.	3.6	91
21	Variable Recruitment of Parallel Elastic Elements: Series–Parallel Elastic Actuators (SPEA) With Dephased Mutilated Gears. IEEE/ASME Transactions on Mechatronics, 2015, 20, 594-602.	5.8	89
22	A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain, 2010, 133, 3210-3220.	7.6	87
23	Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. IEEE/ASME Transactions on Mechatronics, 2014, 19, 1046-1056.	5.8	81
24	Second generation pleated pneumatic artificial muscle and its robotic applications. Advanced Robotics, 2006, 20, 783-805.	1.8	79
25	Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation. Applied Mechanics Reviews, 2018, 70, .	10.1	73
26	Overview of the Lucy Project: Dynamic Stabilization of a Biped Powered by Pneumatic Artificial Muscles. Advanced Robotics, 2008, 22, 1027-1051.	1.8	72
27	A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses. Sensors, 2020, 20, 3972.	3.8	67
28	Development of a compliance controller to reduce energy consumption for bipedal robots. Autonomous Robots, 2008, 24, 419-434.	4.8	66
29	Ankle–knee prosthesis with active ankle and energy transfer: Development of the CYBERLEGs Alpha-Prosthesis. Robotics and Autonomous Systems, 2015, 73, 4-15.	5.1	64
30	Design of Smart Modular Variable Stiffness Actuators for Robotic-Assistive Devices. IEEE/ASME Transactions on Mechatronics, 2017, 22, 1777-1785.	5.8	57
31	CAN THE SOCIAL ROBOT PROBO HELP CHILDREN WITH AUTISM TO IDENTIFY SITUATION-BASED EMOTIONS? A SERIES OF SINGLE CASE EXPERIMENTS. International Journal of Humanoid Robotics, 2013, 10, 1350025.	1.1	56
32	Step Length and Velocity Control of a Dynamic Bipedal Walking Robot With Adaptable Compliant Joints. IEEE/ASME Transactions on Mechatronics, 2013, 18, 598-611.	5.8	50
33	Series and Parallel Elastic Actuation: Influence of Operating Positions on Design and Control. IEEE/ASME Transactions on Mechatronics, 2017, 22, 521-529.	5.8	50
34	Energy Consumption of Geared DC Motors in Dynamic Applications: Comparing Modeling Approaches. IEEE Robotics and Automation Letters, 2016, 1, 524-530.	5.1	49
35	Compact Gearboxes for Modern Robotics: A Review. Frontiers in Robotics and AI, 2020, 7, 103.	3.2	49
36	Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 65.	4.6	47

#	Article	IF	CITATIONS
37	Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles. Robotica, 2006, 24, 401-410.	1.9	46
38	Pathogenic variants in glutamyl-tRNAGIn amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nature Communications, 2018, 9, 4065.	12.8	44
39	Design and Control of a Lower Limb Exoskeleton for Robot-Assisted Gait Training. Applied Bionics and Biomechanics, 2009, 6, 229-243.	1.1	43
40	MECHANICAL DESIGN OF THE HUGGABLE ROBOT PROBO. International Journal of Humanoid Robotics, 2011, 08, 481-511.	1.1	43
41	Psychophysiological response to cognitive workload during symmetrical, asymmetrical and dual-task walking. Human Movement Science, 2015, 40, 248-263.	1.4	43
42	Defining the Phenotype and Assessing Severity in Phosphoglucomutase-1ÂDeficiency. Journal of Pediatrics, 2016, 175, 130-136.e8.	1.8	43
43	Variable stiffness ankle actuator for use in robotic-assisted walking: Control strategy and experimental characterization. Mechanism and Machine Theory, 2019, 134, 604-624.	4.5	41
44	A Pneumatic Artificial Muscle Manufactured Out of Self-Healing Polymers That Can Repair Macroscopic Damages. IEEE Robotics and Automation Letters, 2018, 3, 16-21.	5.1	39
45	Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?. PLoS ONE, 2015, 10, e0140626.	2.5	39
46	Development of a self-healing soft pneumatic actuator: a first concept. Bioinspiration and Biomimetics, 2015, 10, 046007.	2.9	38
47	Design and evaluation of a torque-controllable knee joint actuator with adjustable series compliance and parallel elasticity. Mechanism and Machine Theory, 2018, 130, 71-85.	4.5	37
48	Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Human Molecular Genetics, 2018, 27, 3029-3045.	2.9	37
49	Multi-Axis Force Sensor for Human–Robot Interaction Sensing in a Rehabilitation Robotic Device. Sensors, 2017, 17, 1294.	3.8	36
50	Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 86.	4.6	36
51	A pneumatically powered below-knee prosthesis: Design specifications and first experiments with an amputee. , 2008, , .		34
52	Passive Ankle-Foot Prosthesis Prototype with Extended Push-Off. International Journal of Advanced Robotic Systems, 2013, 10, 101.	2.1	34
53	Clinical and biochemical features guiding the diagnostics in neurometabolic cutis laxa. European Journal of Human Genetics, 2014, 22, 888-895.	2.8	34
54	EtherCAT Tutorial: An Introduction for Real-Time Hardware Communication on Windows [Tutorial]. IEEE Robotics and Automation Magazine, 2018, 25, 22-122.	2.0	34

#	Article	IF	CITATIONS
55	The Safety of a Robot Actuated by Pneumatic Muscles—A Case Study. International Journal of Social Robotics, 2010, 2, 289-303.	4.6	33
56	The AMP-Foot 2.0: Mimicking intact ankle behavior with a powered transtibial prosthesis. , 2012, , .		33
57	Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and Kinematic Validation. Applied Bionics and Biomechanics, 2017, 2017, 1-14.	1.1	31
58	Concept of a Series-Parallel Elastic Actuator for a Powered Transtibial Prosthesis. Actuators, 2013, 2, 59-73.	2.3	29
59	Title is missing!. Multibody System Dynamics, 2003, 10, 45-59.	2.7	28
60	The AMP-Foot 2.1 : actuator design, control and experiments with an amputee. Robotica, 2014, 32, 1347-1361.	1.9	28
61	The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation. BioMedical Engineering OnLine, 2016, 15, 145.	2.7	28
62	Clinical utility gene card for: ALG1 defective congenital disorder of glycosylation. European Journal of Human Genetics, 2015, 23, 1431-1431.	2.8	27
63	International consensus guidelines for phosphoglucomutase 1 deficiency (<scp>PGM1â€CDG</scp>): Diagnosis, followâ€up, and management. Journal of Inherited Metabolic Disease, 2021, 44, 148-163.	3.6	27
64	Null Space Integration Method for Constrained Multibody Systems with No Constraint Violation. Multibody System Dynamics, 2001, 6, 229-243.	2.7	26
65	Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis. Autonomous Robots, 2018, 42, 147-158.	4.8	26
66	Desialylation of Platelets by Pneumococcal Neuraminidase A Induces ADP-Dependent Platelet Hyperreactivity. Infection and Immunity, 2018, 86, .	2.2	26
67	A Motion System for Social and Animated Robots. International Journal of Advanced Robotic Systems, 2014, 11, 72.	2.1	25
68	Biallelic variants inWARS2encoding mitochondrial tryptophanyl-tRNA synthase in six individuals with mitochondrial encephalopathy. Human Mutation, 2017, 38, 1786-1795.	2.5	24
69	The Challenges and Achievements of Experimental Implementation of an Active Transfemoral Prosthesis Based on Biological Quasi-Stiffness: The CYBERLEGs Beta-Prosthesis. Frontiers in Neurorobotics, 2018, 12, 80.	2.8	24
70	Modeling, Design and Test-Bench Validation of a Semi-Active Propulsive Ankle Prosthesis With a Clutched Series Elastic Actuator. IEEE Robotics and Automation Letters, 2019, 4, 1823-1830.	5.1	23
71	Temporal and spatial organization of gait-related electrocortical potentials. Neuroscience Letters, 2015, 599, 75-80.	2.1	22
72	Intact transferrin and total plasma glycoprofiling for diagnosis and therapy monitoring in phosphoglucomutase-I deficiency. Translational Research, 2018, 199, 62-76.	5.0	22

#	Article	IF	CITATIONS
73	Exploiting adaptable passive behaviour to influence natural dynamics applied to legged robots. Robotica, 2005, 23, 149-158.	1.9	20
74	Design and Development of Customized Physical Interfaces to Reduce Relative Motion Between the User and a Powered Ankle Foot Exoskeleton. , 2018, , .		20
75	Driving Robotic Exoskeletons Using Cable-Based Transmissions: A Qualitative Analysis and Overview. Applied Mechanics Reviews, 2018, 70, .	10.1	20
76	A Hopping Robot Driven by a Series Elastic Dual-Motor Actuator. IEEE Robotics and Automation Letters, 2019, 4, 2310-2316.	5.1	20
77	A Personalized and Platform-Independent Behavior Control System for Social Robots in Therapy: Development and Applications. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11, 334-346.	3.8	20
78	Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton. , 2014, , .		19
79	Instrumenting complex exoskeletons for improved human-robot interaction. IEEE Instrumentation and Measurement Magazine, 2015, 18, 5-10.	1.6	18
80	+SPEA introduction: Drastic actuator energy requirement reduction by symbiosis of parallel motors, springs and locking mechanisms. , 2016, , .		18
81	VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 3.	4.6	18
82	Scaling laws for robotic transmissions. Mechanism and Machine Theory, 2019, 140, 601-621.	4.5	18
83	Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 98.	4.6	18
84	Conceptual design of a novel variable stiffness actuator for use in lower limb exoskeletons. , 2015, , .		17
85	Further Delineation of the ALG9-CDG Phenotype. JIMD Reports, 2015, 27, 107-112.	1.5	17
86	A Novel Wolfrom-Based Gearbox for Robotic Actuators. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1980-1988.	5.8	17
87	Development of a generic method to generate upper-body emotional expressions for different social robots. Advanced Robotics, 2015, 29, 597-609.	1.8	16
88	A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot. Frontiers in Neurorobotics, 2019, 13, 20.	2.8	16
89	Search for rare liver diseases: The case of glycosylation defects mimicking Wilson Disease ->. Clinics and Research in Hepatology and Gastroenterology, 2014, 38, 403-406.	1.5	15

90 CYBERLEGS Beta-Prosthesis active knee system. , 2015, , .

#	Article	IF	CITATIONS
91	Torsion MACCEPA: A novel compact compliant actuator designed around the drive axis. , 2015, , .		15
92	Guidelines and Recommendations to Investigate the Efficacy of a Lower-Limb Prosthetic Device: A Systematic Review. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 279-296.	3.2	15
93	Investigating the Effects of Strapping Pressure on Human-Robot Interface Dynamics Using a Soft Robotic Cuff. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 146-155.	3.2	15
94	Design and Evaluation of a Passive Cable-Driven Occupational Shoulder Exoskeleton. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 1020-1031.	3.2	15
95	A Collaborative Homeostatic-Based Behavior Controller for Social Robots in Human–Robot Interaction Experiments. International Journal of Social Robotics, 2017, 9, 675-690.	4.6	14
96	A mutation in mannoseâ€phosphateâ€dolichol utilization defect 1 reveals clinical symptoms of congenital disorders of glycosylation type I and dystroglycanopathy. JIMD Reports, 2019, 50, 31-39.	1.5	14
97	An Autonomous Cognitive Empathy Model Responsive to Users' Facial Emotion Expressions. ACM Transactions on Interactive Intelligent Systems, 2020, 10, 1-23.	3.7	14
98	Congenital disorder of glycosylation caused by starting site-specific variant in syntaxin-5. Nature Communications, 2021, 12, 6227.	12.8	14
99	MOTION GENERATION AND CONTROL FOR THE PNEUMATIC BIPED "LUCY". International Journal of Humanoid Robotics, 2006, 03, 67-103.	1.1	13
100	Enhancing Emotional Facial Expressiveness on NAO. International Journal of Social Robotics, 2016, 8, 513-521.	4.6	13
101	The efficacy of the Ankle Mimicking Prosthetic Foot prototype 4.0 during walking. Prosthetics and Orthotics International, 2018, 42, 504-510.	1.0	13
102	Mechanical Design of an Active Knee Orthosis for Gait Rehabilitation. , 2007, , .		12
103	Design of a powered elbow orthosis for orthopaedic rehabilitation using compliant actuation. , 2008, , .		12
104	Online Reconfiguration of a Variable-Stiffness Actuator. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1866-1876.	5.8	12
105	Studying Design Aspects for Social Robots Using a Generic Gesture Method. International Journal of Social Robotics, 2019, 11, 651-663.	4.6	12
106	Fast and Accurate Pressure Control using On-Off Valves. International Journal of Fluid Power, 2005, 6, 53-58.	0.7	11
107	Enhancing My Keepon robot: A simple and low-cost solution for robot platform in Human-Robot Interaction studies. , 2014, , .		11
108	Cylindrical cam mechanism for unlimited subsequent spring recruitment in Series-Parallel Elastic Actuators. , 2015, , .		11

7

#	Article	IF	CITATIONS
109	The Variable Boundary Layer Sliding Mode Control: A Safe and Performant Control for Compliant Joint Manipulators. IEEE Robotics and Automation Letters, 2016, , 1-1.	5.1	11
110	Integration of 3D Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots. Sensors, 2021, 21, 2157.	3.8	11
111	Series-parallel elastic actuation (SPEA) with intermittent mechanism for reduced motor torque and increased efficiency. , 2013, , .		10
112	Clinical utility gene card for: Phosphomannose isomerase deficiency. European Journal of Human Genetics, 2014, 22, 1153-1153.	2.8	10
113	Case Study on Human Walking during Wearing a Powered Prosthetic Device: Effectiveness of the System "Human-Robot― Advances in Mechanical Engineering, 2014, 6, 365265.	1.6	10
114	Generic method for generating blended gestures and affective functional behaviors for social robots. Autonomous Robots, 2018, 42, 569-580.	4.8	10
115	Varying mechanical compliance benefits energy efficiency of a knee joint actuator. Mechatronics, 2020, 66, 102318.	3.3	10
116	Investigation of self-healing compliant actuators for robotics. , 2015, , .		9
117	Automatic synthesis of arthrokinematically compatible exoskeletons. A case study on its application on a shoulder occupational exoskeleton. Mechanism and Machine Theory, 2021, 157, 104186.	4.5	9
118	From conventional prosthetic feet to bionic feet: A review study. , 2008, , .		8
119	A Two-Degree of Freedom Variable Stiffness Actuator Based on the MACCEPA Concept. Actuators, 2014, 3, 20-40.	2.3	8
120	Clinical utility gene card for: DPAGT1 defective congenital disorder of glycosylation. European Journal of Human Genetics, 2015, 23, 1-3.	2.8	8
121	Realtime Delayless Estimation of Derivatives of Noisy Sensor Signals for Quasi-Cyclic Motions With Application to Joint Acceleration Estimation on an Exoskeleton. IEEE Robotics and Automation Letters, 2018, 3, 1647-1654.	5.1	8
122	On the Electrical Energy Consumption of Active Ankle Prostheses with Series and Parallel Elastic Elements. , 2018, , .		8
123	Toward understanding tissueâ€specific symptoms in dolicholâ€phosphateâ€mannose synthesis disorders; insight from DPM3â€CDG. Journal of Inherited Metabolic Disease, 2019, 42, 984-992.	3.6	8
124	Cognitive performance and brain dynamics during walking with a novel bionic foot: A pilot study. PLoS ONE, 2019, 14, e0214711.	2.5	7
125	Dynamic Performance of a Squeeze Film Damper with a Cylindrical Roller Bearing under a Large Static Radial Loading Range. Machines, 2019, 7, 14.	2.2	6
126	DualKeepon: a human–robot interaction testbed to study linguistic features of speech. Intelligent Service Robotics, 2019, 12, 45-54.	2.6	6

#	Article	IF	CITATIONS
127	Improving the performance of industrial machines with variable stiffness springs. Mechanics Based Design of Structures and Machines, 2022, 50, 115-134.	4.7	6
128	Design of a novel intermittent self-closing mechanism for a MACCEPA-based Series-Parallel Elastic Actuator (SPEA). , 2014, , .		5
129	Failure Mode and Effect Analysis (FMEA)-Driven Design of a Planetary Gearbox for Active Wearable Robotics. Biosystems and Biorobotics, 2019, , 460-464.	0.3	5
130	Introducing Compound Planetary Gears (C-PGTs): A Compact Way to Achieve High Gear Ratios for Wearable Robots. Biosystems and Biorobotics, 2019, , 485-489.	0.3	5
131	Powered ankle-foot system that mimics intact human ankle behavior: Proposal of a new concept. , 2009, , .		4
132	Human Musculoskeletal and Energetic Adaptations to Unilateral Robotic Knee Gait Assistance. IEEE Transactions on Biomedical Engineering, 2022, 69, 1141-1150.	4.2	4
133	SMARCOS: Off-the-Shelf Smart Compliant Actuators for Human–Robot Applications. Actuators, 2021, 10, 289.	2.3	4
134	A Study on the Bandwidth Characteristics of Pleated Pneumatic Artificial Muscles. Applied Bionics and Biomechanics, 2009, 6, 3-9.	1.1	3
135	A Stiffness-Fault-Tolerant Control Strategy for an Elastically Actuated Powered Knee Orthosis. , 2020, , .		3
136	Prismatic Gravity Compensator for Variable Payloads. IEEE Robotics and Automation Letters, 2022, 7, 3749-3756.	5.1	3
137	Use of Compliant Actuators in Robotic Applications. , 2009, , .		2
138	Prototype design of a novel modular two-degree-of-freedom variable stiffness actuator. , 2014, , .		2
139	Clinical utility gene card for: Phosphomannomutase 2 deficiency. European Journal of Human Genetics, 2014, 22, 1054-1054.	2.8	2
140	Real-time physical layer architecture for CORBYS gait rehabilitation robot. , 2015, , .		2
141	Torque control of a push-pull cable driven powered orthosis for the CORBYS platform. , 2015, , .		2
142	"Hmm, Did You Hear What I Just Said?― Development of a Re-Engagement System for Socially Interactive Robots. Robotics, 2019, 8, 95.	3.5	2
143	Improved Motion Classification With an Integrated Multimodal Exoskeleton Interface. Frontiers in Neurorobotics, 2021, 15, 693110.	2.8	2
144	Performance of the CYBERLEGs motorized lower limb prosthetic device during simulated daily activities. Wearable Technologies, 2021, 2, .	3.1	2

#	Article	IF	CITATIONS
145	Scaling laws for parallel motor-gearbox arrangements. , 2020, , .		2
146	Locomotion Control Architecture for the Pneumatic Biped Lucy consisting of a Trajectory Generator and Joint Trajectory Tracking Controller. , 2006, , .		1
147	A compliant 2-DoF ankle-foot system for a biologically inspired humanoid robot. , 2015, , .		1
148	Discrete binary muscle-inspired actuation with motor unit overpowering and binary control strategy. , 2017, , .		1
149	Energetic Advantages of Constant Torque Springs in Series Parallel Elastic Actuators. , 2019, , .		1
150	Novel SPECTA Actuator to Improve Energy Recuperation and Efficiency. Actuators, 2022, 11, 64.	2.3	1
151	P428â€An interesting case of a girl with a <i>de novo</i> unbalanced translocation causing distinctive metabolic markers. , 2019, , .		Ο
152	Let's Make Ball Balancing Great Again: Why You Should Use Temporary Speed Reduction. Machines, 2020, 8, 74.	2.2	0