
G Suresh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9308171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, characterization and inÂvitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Materials Chemistry and Physics, 2012, 134, 1127-1135.	4.0	115
2	Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Materials Letters, 2012, 76, 198-200.	2.6	109
3	Synthesis and characterization of bioactive hydroxyapatite–calcite nanocomposite for biomedical applications. Journal of Colloid and Interface Science, 2010, 349, 56-62.	9.4	87
4	Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity. Environmental Research, 2022, 212, 113323.	7.5	80
5	Flower-like hydroxyapatite nanostructure obtained from eggshell: A candidate for biomedical applications. Ceramics International, 2013, 39, 8293-8299.	4.8	68
6	In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis. Journal of Materials Chemistry B, 2014, 2, 5052-5060.	5.8	62
7	One step method to synthesize flower-like hydroxyapatite architecture using mussel shell bio-waste as a calcium source. Ceramics International, 2017, 43, 3457-3461.	4.8	60
8	Green synthesis and antibacterial activity of hydroxyapatite nanorods for orthopedic applications. MRS Communications, 2017, 7, 183-188.	1.8	55
9	Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method. Ceramics International, 2018, 44, 11257-11264.	4.8	54
10	Hydrangea paniculata flower extract-mediated green synthesis of MgNPs and AgNPs for health care applications. Powder Technology, 2017, 305, 488-494.	4.2	44
11	Microwave-assisted hydrothermal synthesis of mesoporous carbonated hydroxyapatite with tunable nanoscale characteristics for biomedical applications. Ceramics International, 2019, 45, 970-977.	4.8	42
12	Utilization of snail shells to synthesise hydroxyapatite nanorods for orthopedic applications. RSC Advances, 2015, 5, 39544-39548.	3.6	40
13	Ascorbic Acid-Assisted Microwave Synthesis of Mesoporous Ag-Doped Hydroxyapatite Nanorods from Biowaste Seashells for Implant Applications. ACS Applied Bio Materials, 2019, 2, 2280-2293.	4.6	40
14	Investigations on nickel ferrite embedded calcium phosphate nanoparticles for biomedical applications. Journal of Alloys and Compounds, 2017, 695, 3211-3219.	5.5	35
15	Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets. Modern Electronic Materials, 2016, 2, 74-78.	0.6	31
16	Structural, optical and photocatlytic properties of zinc oxide nanoparticles obtained by simple plant extract mediated synthesis. Journal of Materials Science: Materials in Electronics, 2019, 30, 1927-1935.	2.2	29
17	Fabrication of a Novel Biocompatible Magnetic Biomaterial with Hyperthermia Potential. Journal of the American Ceramic Society, 2014, 97, 1115-1122.	3.8	28
18	Morphology and size controlled synthesis of zinc oxide nanostructures and their optical properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 9339-9346.	2.2	25

G Suresh Kumar

#	Article	IF	CITATIONS
19	Mesoporous Mg-doped hydroxyapatite nanorods prepared from bio-waste blue mussel shells for implant applications. Ceramics International, 2020, 46, 28514-28527.	4.8	23
20	Ecofriendly green synthesis of ZnO nanostructures using <i>Artabotrys Hexapetalu</i> and <i>Bambusa Vulgaris</i> plant extract and investigation on their photocatalytic and antibacterial activity. Materials Research Express, 2019, 6, 105098.	1.6	22
21	Hydrothermal synthesis of CuO/g-C3N4 nanosheets for visible-light driven photodegradation of methylene blue. Diamond and Related Materials, 2022, 121, 108735.	3.9	22
22	Role of material processing on the thermal stability and sinterability of nanocrystalline hydroxyapatite. Powder Technology, 2012, 225, 190-195.	4.2	20
23	Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Advances, 2015, 5, 60188-60198.	3.6	20
24	Microwave assisted synthesis and characterizations of near infrared emitting Yb/Er doped fluorapatite nanoparticles. Journal of Alloys and Compounds, 2016, 689, 525-532.	5.5	20
25	Hylotelephium telephium Flower Extract-Mediated Biosynthesis of CuO and ZnO Nanoparticles with Promising Antioxidant and Antibacterial Properties for Healthcare Applications. Jom, 2020, 72, 1264-1272.	1.9	20
26	Hydrothermal assisted phytofabrication of zinc oxide nanoparticles with different nanoscale characteristics for the photocatlytic degradation of Rhodamine B. Optik, 2020, 202, 163607.	2.9	19
27	Curcuma longa tuber extract mediated synthesis of hydroxyapatite nanorods using biowaste as a calcium source for the treatment of bone infections. Journal of Sol-Gel Science and Technology, 2018, 86, 610-616.	2.4	18
28	Sodium dodecyl sulfate mediated microwave synthesis of biocompatible superparamagnetic mesoporous hydroxyapatite nanoparticles using black Chlamys varia seashell as a calcium source for biomedical applications. Ceramics International, 2019, 45, 15143-15155.	4.8	18
29	Repurposing of antidepression drug sertraline for antimicrobial activity against <i>Staphylococcus aureus</i> : a potential approach for the treatment of osteomyelitis. New Journal of Chemistry, 2019, 43, 5315-5324.	2.8	17
30	Optimization of a lab scale and pilot scale conversion of eggshell biowaste into hydroxyapatite using microwave reactor. Ceramics International, 2020, 46, 25024-25034.	4.8	14
31	Investigation on photocatalytic activity of g-C3N4 decorated α-Fe2O3 nanostructure synthesized by hydrothermal method for the visible-light assisted degradation of organic pollutant. Diamond and Related Materials, 2022, 125, 109021.	3.9	14
32	Microwave combustion synthesis of tin oxide-decorated silica nanostructure using rice husk template for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 5738-5745.	2.2	13
33	Rare-earth ions integrated silica nanoparticles derived from rice husk via microwave-assisted combustion method for bioimaging applications. Ceramics International, 2020, 46, 18366-18372.	4.8	13
34	Bio-synthesize of photocatalytic Fe2O3 nanoparticles using Leucas aspera and Jatropha podagrica leaf extract for an effective removal of textile dye pollutants. Optik, 2022, 249, 168275.	2.9	13
35	White LED active α-Fe2O3/rGO photocatalytic nanocomposite for an effective degradation of tetracycline and ibuprofen molecules. Environmental Research, 2022, 212, 113301.	7.5	13
36	Microwave-assisted synthesis of superparamagnetic mesoporous Co-doped hydroxyapatite nanorods for various biomedical applications. Ceramics International, 2021, 47, 8642-8652.	4.8	12

G Suresh Kumar

#	Article	IF	CITATIONS
37	Rapid synthesis of eggshell derived hydroxyapatite with nanoscale characteristics for biomedical applications. Ceramics International, 2022, 48, 1326-1339.	4.8	12
38	Mesoporous Mn-doped hydroxyapatite nanorods obtained via pyridinium chloride enabled microwave-assisted synthesis by utilizing Donax variabilis seashells for implant applications. Materials Science and Engineering C, 2021, 126, 112170.	7.3	11
39	Surfactant-assisted microwave synthesis of luminescent/magnetic bifunctional hydroxyapatite nanorods for dual-model imaging. Optik, 2021, 225, 165564.	2.9	10
40	Citric Acid-Mediated Microwave-Hydrothermal Synthesis of Mesoporous F-Doped HAp Nanorods from Bio-Waste for Biocidal Implant Applications. Nanomaterials, 2022, 12, 315.	4.1	10
41	Photoelectrochemical properties and photocatalytic degradation of methyl orange dye by different ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 2022, 33, 9732-9742.	2.2	10
42	Rice Husk-Derived Mesoporous Silica Nanostructure for Supercapacitors Application: a Possible Approach for Recycling Bio-Waste into a Value-Added Product. Silicon, 2022, 14, 10129-10135.	3.3	10
43	Eggshell derived mesoporous biphasic calcium phosphate for biomedical applications using rapid thermal processing. International Journal of Applied Ceramic Technology, 2019, 16, 1932-1943.	2.1	9
44	Amorphous silica nanoparticles derived from biowaste via microwave combustion for drug delivery. International Journal of Applied Ceramic Technology, 2021, 18, 583-589.	2.1	9
45	Biocompatible Luminomagnetic Hydroxyapatite Nanoparticles for Dual Model Bioimaging. Journal of Bionanoscience, 2016, 10, 267-274.	0.4	8
46	A novel rhombohedron-like nickel ferrite nanostructure: Microwave combustion synthesis, structural characterization and magnetic properties. Journal of Science: Advanced Materials and Devices, 2016, 1, 282-285.	3.1	8
47	Comparative study of hydroxyapatite prepared from eggshells and synthetic precursors by microwave irradiation method for medical applications. Materials Today: Proceedings, 2019, 15, 344-352.	1.8	8
48	Development of Fe ₃ O ₄ integrated polymer/phosphate glass composite scaffolds for bone tissue engineering. Materials Advances, 2020, 1, 3466-3475.	5.4	8
49	Synthesis of Fe3O4-decorated SiO2 nanostructure using rice husk as a source by microwave combustion for the development of a magnetically recoverable adsorbent. Ceramics International, 2022, 48, 10339-10339.	4.8	8
50	Synthesis of silver-integrated silica nanostructures using rice hulls and their electrochemical performance for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2021, 32, 17534-17544.	2.2	7
51	Hydroxyapatite-based antibacterial bio-nanomaterials: an insight into the synthesis using mussel shell as a calcium source, physicochemical properties, and nanoindentation characteristics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	6
52	Effect of g-C3N4 on structural, optical, and photocatalytic properties of hexagonal cylinder-like twinned ZnO microcrystals prepared by the hydrothermal method. Journal of Materials Science: Materials in Electronics, 2021, 32, 24095-24106.	2.2	5
53	One-pot ultrasonic-assisted synthesis of magnetic hydroxyapatite nanoparticles using mussel shell biowaste with the aid of trisodium citrate. Ceramics International, 2022, 48, 28299-28307.	4.8	5
54	Microwave-assisted combustion synthesis of soft ferromagnetic spinel MFe2O4 (M = Ni, Mg, Zn) nanoparticles using Citrus limon fruit extract as a fuel. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	4

G SURESH KUMAR

#	Article	IF	CITATIONS
55	Fish Scale Derived Nanocrystalline Hydroxyapatite: A Potential Candidate for Orthopedic Applications. Journal of Bionanoscience, 2016, 10, 140-144.	0.4	4
56	Repurposing the Antibacterial Activity of Etoposide─A Chemotherapeutic Drug in Combination with Eggshell-Derived Hydroxyapatite. ACS Biomaterials Science and Engineering, 2022, 8, 682-693.	5.2	4
57	Zinc and Carbonate Co-Substituted Nano-Hydroxyapatite. , 2011, , .		2
58	Synthesis and photoluminescence study of flower-like hydroxyapatite nanostructure for bioprobe applications. AIP Conference Proceedings, 2013, , .	0.4	2
59	Effect of Si, B, Al 2 O 3 and ZrO 2 nano-modifiers on the structural and mechanical properties of Fe + 0.5% C alloy. Archives of Civil and Mechanical Engineering, 2017, 17, 669-676.	3.8	2
60	Removal of Reactive Textile Dyes Using Carbonate Substituted Nanocrystalline Hydroxyapatite. Journal of Bionanoscience, 2016, 10, 38-46.	0.4	2
61	A comparative study on visible-light-driven photocatalytic activity of CdO nanowires and g-C3N4/CdO hybrid nanostructure. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	1
62	Editorial: Design and Applications of Metal- and Metal Oxide-Based Antibacterial Materials. Frontiers in Materials, 2021, 8, .	2.4	1
63	Hydrothermal synthesis of ZnO/C microflowers for photocatalytic degradation of organic pollutants under visible light irradiation: kinetics, mechanism and recyclability. Journal of Materials Science: Materials in Electronics, 2022, 33, 9412-9424.	2.2	1
64	Adsorption of reactive dyes on to carbonate substituted nanohydroxyapatite. , 2014, , .		0
65	Hollow MgNi 1.4 Zn 0.6 /CaCu 2.79 Fe 4.21 O 12 nanocomposite synthesis via ultrasonic highâ€ŧemperature spray pyrolysis. Journal of the American Ceramic Society, 2018, 101, 3761-3766.	3.8	0