Changhai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9307983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy, 2019, 56, 138-150.	16.0	289
2	Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr _{0.2} Ti _{0.8})O ₃ –0.5(Ba _{0.7} Ca _{0.3})TiO <s nanofibers. Journal of Materials Chemistry A, 2017, 5, 16757-16766.</s 	ub>3 <td>_{>>}¹⁷⁷</td>	_{>>} ¹⁷⁷
3	Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Materials, 2020, 25, 180-192.	18.0	152
4	Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics. Chemical Engineering Journal, 2020, 389, 124443.	12.7	143
5	Enhanced dielectric performance of amorphous calcium copper titanate/polyimide hybrid film. Journal of Materials Chemistry C, 2014, 2, 172-177.	5.5	115
6	High Energy Storage Density for Poly(vinylidene fluoride) Composites by Introduced Core–Shell CaCu ₃ Ti ₄ O ₁₂ @Al ₂ O ₃ Nanofibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 8641-8649.	6.7	112
7	Excellent Energy Storage of Sandwich-Structured PVDF-Based Composite at Low Electric Field by Introduction of the Hybrid CoFe ₂ 0 ₄ @BZT–BCT Nanofibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 403-412.	6.7	110
8	Sandwich-Structured PVDF-Based Composite Incorporated with Hybrid Fe ₃ O ₄ @BN Nanosheets for Excellent Dielectric Properties and Energy Storage Performance. Journal of Physical Chemistry C, 2018, 122, 1500-1512.	3.1	108
9	Polymer dielectric films exhibiting superior high-temperature capacitive performance by utilizing an inorganic insulation interlayer. Materials Horizons, 2022, 9, 1273-1282.	12.2	93
10	Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy, 2019, 66, 104195.	16.0	89
11	Excellent energy storage density and efficiency in blend polymer-based composites by design of core-shell structured inorganic fibers and sandwich structured films. Composites Part B: Engineering, 2019, 177, 107429.	12.0	89
12	Excellent Energy Storage Properties with High-Temperature Stability in Sandwich-Structured Polyimide-Based Composite Films. ACS Sustainable Chemistry and Engineering, 2019, 7, 748-757.	6.7	88
13	Nano iron oxide-deposited calcium copper titanate/polyimide hybrid films induced by an external magnetic field: toward a high dielectric constant and suppressed loss. Journal of Materials Chemistry C, 2016, 4, 8179-8188.	5.5	86
14	Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Scientific Reports, 2016, 6, 33508.	3.3	80
15	A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances. Journal of Materials Chemistry C, 2019, 7, 14148-14158.	5.5	74
16	PVDF-Based Dielectric Composite Films with Excellent Energy Storage Performances by Design of Nanofibers Composition Gradient Structure. ACS Applied Energy Materials, 2018, 1, 6320-6329.	5.1	70
17	Excellent Energy Storage Performance of Ferroconcrete-like All-Organic Linear/Ferroelectric Polymer Films Utilizing Interface Engineering. ACS Applied Materials & Interfaces, 2020, 12, 56424-56434.	8.0	66
18	High-temperature all-organic energy storage dielectric with the performance of self-adjusting electric field distribution. Journal of Materials Chemistry A, 2021, 9, 16384-16394.	10.3	65

CHANGHAI ZHANG

#	Article	IF	CITATIONS
19	High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Composites Part B: Engineering, 2020, 198, 108206.	12.0	64
20	Polymer nanocomposites with excellent energy storage performances by utilizing the dielectric properties of inorganic fillers. Chemical Engineering Journal, 2021, 408, 127314.	12.7	61
21	Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride)-based dielectric film for high energy density capacitor. APL Materials, 2017, 5,	5.1	55
22	Designing of Ferroelectric/Linear Dielectric Bilayer Films: An Effective Way to Improve the Energy Storage Performances of Polymer-Based Capacitors. Journal of Physical Chemistry C, 2020, 124, 5920-5927.	3.1	52
23	Enhanced Thermal Conductivity and Dielectric Properties of Iron Oxide/Polyethylene Nanocomposites Induced by a Magnetic Field. Scientific Reports, 2017, 7, 3072.	3.3	46
24	Microstructures and energy storage property of sandwiched BZT-BCT@Fe3O4/polyimide composites. Journal of Materials Science: Materials in Electronics, 2019, 30, 1-8.	2.2	46
25	Microstructure and dielectric properties of BZT-BCT/PVDF nanocomposites. Results in Physics, 2018, 8, 391-396.	4.1	45
26	Significantly Improved Energy Storage Performance of PVDF Ferroelectric Films by Blending PMMA and Filling PCBM. ACS Sustainable Chemistry and Engineering, 2021, 9, 16291-16303.	6.7	42
27	Improved Energy Storage Performance of All-Organic Composite Dielectric via Constructing Sandwich Structure. Polymers, 2020, 12, 1972.	4.5	30
28	Enhanced Energy Storage Characteristics in PVDF-Based Nanodielectrics With Core-Shell Structured and Optimized Shape Fillers. IEEE Access, 2020, 8, 81542-81550.	4.2	30
29	Improved Highâ€Temperature Energy Storage Performance of PEI Dielectric Films by Introducing an SiO ₂ Insulating Layer. Macromolecular Materials and Engineering, 2021, 306, 2100514.	3.6	24
30	Dielectric properties of sandwich-structured BaTiO3/polyimide hybrid films. Journal of Materials Science: Materials in Electronics, 2017, 28, 15142-15148.	2.2	23
31	Optimizing sandwich-structured composites based on the structure of the filler and the polymer matrix: toward high energy storage properties. RSC Advances, 2019, 9, 33229-33237.	3.6	22
32	Highly (100)-oriented sandwich structure of (Na _{0.85} K _{0.15}) _{0.5} Bi _{0.5} TiO ₃ composite films with outstanding pyroelectric properties. Journal of Materials Chemistry C, 2016, 4, 4442-4450.	5.5	21
33	Designing of surface modification and sandwich structure: effective routs to improve energy storage property in polyimide-based composite films. Journal of Materials Science: Materials in Electronics, 2019, 30, 19956-19965.	2.2	18
34	Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers. AIP Advances, 2015, 5, .	1.3	17
35	Low temperature growth of (100)-oriented Ba(Zr0.2Ti0.8)O3- 0.5(Ba0.7Ca0.3)TiO3 thin films using a LaNiO3 seed layer. Journal of Alloys and Compounds, 2016, 663, 818-822.	5.5	17
36	Study on nonlinear conductivity and breakdown characteristics of zinc oxide–hexagonal boron nitride/EPDM composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 19678-19688.	2.2	15

CHANGHAI ZHANG

#	Article	IF	CITATIONS
37	Sandwich structured BT-Fe3O4/PVDF composites with excellent dielectric properties and energy density. Journal of Materials Science: Materials in Electronics, 2017, 28, 11900-11906.	2.2	14
38	Improved energy storage performances of solution-processable ferroelectric polymer by modulating of microscopic and mesoscopic structure. Composites Part B: Engineering, 2020, 199, 108312.	12.0	14
39	Effect of particle size on the dielectric properties of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.8)TiO3/polyvinylidene fluoride hybrid films. Ceramics International, 2015, 41, 15116-15121.	4.8	13
40	Energy storage properties of P(VDFâ€TrFEâ€CTFE)â€based composite dielectrics with uniform and gradientâ€doped boron nitride nanosheets. IET Nanodielectrics, 2022, 5, 50-61.	4.1	13
41	Interesting Influence of Different Inorganic Particles on the Energy Storage Performance of a Polyethersulfone-Based Dielectric Composite. ACS Applied Energy Materials, 2022, 5, 3545-3557.	5.1	13
42	High Energy Storage Performance of All-Inorganic Flexible Antiferroelectric–Insulator Multilayered Thin Films. ACS Applied Materials & Interfaces, 2022, 14, 28997-29006.	8.0	13
43	Excellent energy storage performance for P(VDF-TrFE-CFE) composites by filling core–shell structured inorganic fibers. Journal of Materials Science: Materials in Electronics, 2020, 31, 21128-21141.	2.2	11
44	High energy storage performance for flexible PbZrO3 thin films by seed layer engineering. Ceramics International, 2022, 48, 23840-23848.	4.8	10
45	Improved Energy Storage Performance of P(VDF-TrFE-CFE) Multilayer Films by Utilizing Inorganic Functional Layers. ACS Applied Energy Materials, 2021, 4, 11726-11734.	5.1	9
46	Ni-coated CaCu3Ti4O12/low density polyethylene composite material with ultra-high dielectric permittivity. AIP Advances, 2015, 5, .	1.3	8
47	Investigation of electrical and mechanical properties of silver-hexagonal boron nitride/EPDM composites. Journal of Materials Science: Materials in Electronics, 2019, 30, 13321-13329.	2.2	8
48	Nonlinear conductivity and breakdown strength characteristics of silicon carbide and hexagonal boron nitride co-doped epoxy resin composites. AIP Advances, 2020, 10, .	1.3	8
49	Thermal and Electrical Properties of Epoxy Composites Filled with 3D hâ€BN/TOCNF Fillers. Macromolecular Materials and Engineering, 2022, 307, .	3.6	8
50	Microstructure and electric properties of Nb doping x(Ba0.7Ca0.3)TiO3–(1â^'x)Ba(Zr0.2Ti0.8)O3 ceramics. Journal of Alloys and Compounds, 2016, 685, 936-940.	5.5	7
51	Nano-Fe3O4 deposited CaCu3Ti4O12/poly(vinylidene fluoride) composites with enhanced dielectric properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 2502-2510.	2.2	7
52	Structure and piezoelectric properties of MnO2 doped Ba0.985Ca0.005Ti0.98Sn0.02O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 18950-18958.	2.2	5
53	Low temperature preparation and electric properties of highly (100)-oriented (Na0.85K0.15)0.5Bi0.5TiO3 thin films prepared by a sol–gel route. Ceramics International, 2016, 42, 2497-2501.	4.8	4
54	Investigation of electrical properties of ZnO@Ag/EPDM composites. AIP Advances, 2020, 10, .	1.3	3

CHANGHAI ZHANG

#	Article	IF	CITATIONS
55	Electrical, mechanical and thermal properties of ZnO/SiR composite dielectric. Journal of Materials Science: Materials in Electronics, 2021, 32, 17253-17265.	2.2	3
56	Structure, dielectric, ferroelectric, and energy density properties of polyethersulfone-based composite for energy storage application. Journal of Materials Science: Materials in Electronics, 2022, 33, 12884-12899.	2.2	3
57	Effect of MWCNTs/ZnO inorganic fillers on the electrical, mechanical and thermal properties of SiR-based composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 27676-27687.	2.2	2
58	Investigations on the Electrical Performances of CuNPs/BN/EPDM Composites. Journal of Electronic Materials, 2022, 51, 1349-1357.	2.2	2
59	Interface diffusion and pyroelectric properties of Pb0.8La0.1Ca0.1Ti0.975O3/(Na0.85K0.15)0.5Bi0.5TiO3 hierarchical composite thin films. Ceramics International, 2015, 41, 13767-13771.	4.8	1
60	Study on Nonlinear Conductivity of CCTO/EPDM Rubber Composites. Materials, 2018, 11, 1590.	2.9	1
61	Study on electrical properties of donor ZnO nanoparticles/EPDM composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 26894-26904.	2.2	0