## K Tanuj Sapra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/930797/publications.pdf Version: 2024-02-01



Κ ΤΛΝΙΗ ΟΛΟΟΛ

| #  | Article                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and<br>Meshworks. Cells, 2021, 10, 1960.                               | 1.8  | 13        |
| 2  | Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear<br>lamina. Nature Communications, 2020, 11, 6205.                    | 5.8  | 40        |
| 3  | Conformational Plasticity of Human Protease-Activated Receptor 1 upon Antagonist- and Agonist-Binding. Structure, 2019, 27, 1517-1526.e3.                       | 1.6  | 8         |
| 4  | Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope.<br>Methods in Molecular Biology, 2019, 2003, 107-144.         | 0.4  | 0         |
| 5  | Seeing and sensing single G protein-coupled receptors by atomic force microscopy. Current Opinion in Cell Biology, 2019, 57, 25-32.                             | 2.6  | 18        |
| 6  | Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist.<br>Structure, 2018, 26, 829-838.e4.                           | 1.6  | 13        |
| 7  | Profilin 1–mediated cytoskeletal rearrangements regulate integrin function in mouse platelets. Blood<br>Advances, 2018, 2, 1040-1045.                           | 2.5  | 12        |
| 8  | Single-Molecule Force Spectroscopy of Transmembrane β-Barrel Proteins. Annual Review of Analytical Chemistry, 2018, 11, 375-395.                                | 2.8  | 21        |
| 9  | The molecular architecture of lamins in somatic cells. Nature, 2017, 543, 261-264.                                                                              | 13.7 | 339       |
| 10 | Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Scientific Reports, 2017, 7, 45167. | 1.6  | 66        |
| 11 | Toward correlating structure and mechanics of platelets. Cell Adhesion and Migration, 2016, 10, 568-575.                                                        | 1.1  | 23        |
| 12 | The macromolecular architecture of platelet-derived microparticles. Journal of Structural Biology, 2016, 193, 181-187.                                          | 1.3  | 19        |
| 13 | Roll, adhere, spread and contract: Structural mechanics of platelet function. European Journal of<br>Cell Biology, 2015, 94, 129-138.                           | 1.6  | 56        |
| 14 | Developments in cryo-electron tomography for in situ structural analysis. Archives of Biochemistry and Biophysics, 2015, 581, 78-85.                            | 1.4  | 22        |
| 15 | Structural analysis of multicellular organisms with cryo-electron tomography. Nature Methods, 2015, 12, 634-636.                                                | 9.0  | 85        |
| 16 | Construction and Manipulation of Functional Three-Dimensional Droplet Networks. ACS Nano, 2014, 8, 771-779.                                                     | 7.3  | 52        |
| 17 | An engineered dimeric protein pore that spans adjacent lipid bilayers. Nature Communications, 2013, 4, 1725.                                                    | 5.8  | 44        |
| 18 | Atomic Force Microscopy and Spectroscopy to Probe Single Membrane Proteins in Lipid Bilayers.<br>Methods in Molecular Biology, 2013, 974, 73-110.               | 0.4  | 3         |

K TANUJ SAPRA

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Evolving protocells to prototissues: rational design of a missing link. Biochemical Society<br>Transactions, 2013, 41, 1159-1165.                                                       | 1.6  | 18        |
| 20 | Lipid-coated hydrogel shapes as components of electrical circuits and mechanical devices. Scientific Reports, 2012, 2, 848.                                                             | 1.6  | 37        |
| 21 | Dual energy landscape: The functional state of the βâ€barrel outer membrane protein G molds its<br>unfolding energy landscape. Proteomics, 2010, 10, 4151-4162.                         | 1.3  | 16        |
| 22 | One βâ€Hairpin after the Other: Exploring Mechanical Unfolding Pathways of the Transmembrane βâ€Barrel<br>Protein OmpG. Angewandte Chemie - International Edition, 2009, 48, 8306-8308. | 7.2  | 38        |
| 23 | Modulation of Molecular Interactions and Function by Rhodopsin Palmitylation. Biochemistry, 2009, 48, 4294-4304.                                                                        | 1.2  | 31        |
| 24 | Probing Single Membrane Proteins by Atomic Force Microscopy. , 2009, , 449-485.                                                                                                         |      | 0         |
| 25 | From Valleys to Ridges: Exploring the Dynamic Energy Landscape of Single Membrane Proteins.<br>ChemPhysChem, 2008, 9, 954-966.                                                          | 1.0  | 43        |
| 26 | Role of Extracellular Glutamic Acids in the Stability and Energy Landscape of Bacteriorhodopsin.<br>Biophysical Journal, 2008, 95, 3407-3418.                                           | 0.2  | 23        |
| 27 | Mechanical Properties of Bovine Rhodopsin and Bacteriorhodopsin:  Possible Roles in Folding and<br>Function. Langmuir, 2008, 24, 1330-1337.                                             | 1.6  | 43        |
| 28 | Point Mutations in Membrane Proteins Reshape Energy Landscape and Populate Different Unfolding<br>Pathways. Journal of Molecular Biology, 2008, 376, 1076-1090.                         | 2.0  | 52        |
| 29 | Stabilizing Effect of Zn2+ in Native Bovine Rhodopsin. Journal of Biological Chemistry, 2007, 282, 11377-11385.                                                                         | 1.6  | 61        |
| 30 | A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single-molecule force spectroscopy. Bioinformatics, 2007, 23, e231-e236.     | 1.8  | 30        |
| 31 | Deciphering Molecular Interactions of Native Membrane Proteins by Single-Molecule Force<br>Spectroscopy. Annual Review of Biophysics and Biomolecular Structure, 2007, 36, 233-260.     | 18.3 | 124       |
| 32 | Pattern Recognition of Single-Molecule Force Spectroscopy Data. , 2007, , 3-13.                                                                                                         |      | 0         |
| 33 | Characterizing Molecular Interactions in Different Bacteriorhodopsin Assemblies by Single-molecule<br>Force Spectroscopy. Journal of Molecular Biology, 2006, 355, 640-650.             | 2.0  | 93        |
| 34 | Detecting Molecular Interactions that Stabilize Native Bovine Rhodopsin. Journal of Molecular<br>Biology, 2006, 358, 255-269.                                                           | 2.0  | 71        |
| 35 | Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiology of Aging, 2006, 27, 546-561.                                                                | 1.5  | 38        |
| 36 | Single-molecule studies of membrane proteins. Current Opinion in Structural Biology, 2006, 16, 489-495.                                                                                 | 2.6  | 102       |

K TANUJ SAPRA

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Structure-Based Analysis of Single Molecule Force Spectroscopy (SMFS) Data for Bacteriorhodopsin and Four Mutants. Lecture Notes in Computer Science, 2006, , 162-172. | 1.0 | 0         |
| 38 | Complex Stability of Single Proteins Explored by Forced Unfolding Experiments. Biophysical Journal, 2005, 88, L37-L39.                                                   | 0.2 | 5         |
| 39 | Differentiation of Cytoplasmic and Meiotic Spindle Assembly MCAK Functions by Aurora B-dependent<br>Phosphorylation. Molecular Biology of the Cell, 2004, 15, 2895-2906. | 0.9 | 202       |