K Tanuj Sapra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/930797/publications.pdf

Version: 2024-02-01

39 papers 1,863 citations

22 h-index

304368

35 g-index

40 all docs

40 docs citations

times ranked

40

2206 citing authors

#	Article	IF	CITATIONS
1	The molecular architecture of lamins in somatic cells. Nature, 2017, 543, 261-264.	13.7	339
2	Differentiation of Cytoplasmic and Meiotic Spindle Assembly MCAK Functions by Aurora B-dependent Phosphorylation. Molecular Biology of the Cell, 2004, 15, 2895-2906.	0.9	202
3	Deciphering Molecular Interactions of Native Membrane Proteins by Single-Molecule Force Spectroscopy. Annual Review of Biophysics and Biomolecular Structure, 2007, 36, 233-260.	18.3	124
4	Single-molecule studies of membrane proteins. Current Opinion in Structural Biology, 2006, 16, 489-495.	2.6	102
5	Characterizing Molecular Interactions in Different Bacteriorhodopsin Assemblies by Single-molecule Force Spectroscopy. Journal of Molecular Biology, 2006, 355, 640-650.	2.0	93
6	Structural analysis of multicellular organisms with cryo-electron tomography. Nature Methods, 2015, 12, 634-636.	9.0	85
7	Detecting Molecular Interactions that Stabilize Native Bovine Rhodopsin. Journal of Molecular Biology, 2006, 358, 255-269.	2.0	71
8	Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Scientific Reports, 2017, 7, 45167.	1.6	66
9	Stabilizing Effect of Zn2+ in Native Bovine Rhodopsin. Journal of Biological Chemistry, 2007, 282, 11377-11385.	1.6	61
10	Roll, adhere, spread and contract: Structural mechanics of platelet function. European Journal of Cell Biology, 2015, 94, 129-138.	1.6	56
11	Point Mutations in Membrane Proteins Reshape Energy Landscape and Populate Different Unfolding Pathways. Journal of Molecular Biology, 2008, 376, 1076-1090.	2.0	52
12	Construction and Manipulation of Functional Three-Dimensional Droplet Networks. ACS Nano, 2014, 8, 771-779.	7. 3	52
13	An engineered dimeric protein pore that spans adjacent lipid bilayers. Nature Communications, 2013, 4, 1725.	5.8	44
14	From Valleys to Ridges: Exploring the Dynamic Energy Landscape of Single Membrane Proteins. ChemPhysChem, 2008, 9, 954-966.	1.0	43
15	Mechanical Properties of Bovine Rhodopsin and Bacteriorhodopsin:  Possible Roles in Folding and Function. Langmuir, 2008, 24, 1330-1337.	1.6	43
16	Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina. Nature Communications, 2020, 11 , 6205.	5.8	40
17	Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiology of Aging, 2006, 27, 546-561.	1.5	38
18	One βâ€Hairpin after the Other: Exploring Mechanical Unfolding Pathways of the Transmembrane βâ€Barrel Protein OmpG. Angewandte Chemie - International Edition, 2009, 48, 8306-8308.	7.2	38

#	Article	IF	CITATIONS
19	Lipid-coated hydrogel shapes as components of electrical circuits and mechanical devices. Scientific Reports, 2012, 2, 848.	1.6	37
20	Modulation of Molecular Interactions and Function by Rhodopsin Palmitylation. Biochemistry, 2009, 48, 4294-4304.	1.2	31
21	A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single-molecule force spectroscopy. Bioinformatics, 2007, 23, e231-e236.	1.8	30
22	Role of Extracellular Glutamic Acids in the Stability and Energy Landscape of Bacteriorhodopsin. Biophysical Journal, 2008, 95, 3407-3418.	0.2	23
23	Toward correlating structure and mechanics of platelets. Cell Adhesion and Migration, 2016, 10, 568-575.	1.1	23
24	Developments in cryo-electron tomography for in situ structural analysis. Archives of Biochemistry and Biophysics, 2015, 581, 78-85.	1.4	22
25	Single-Molecule Force Spectroscopy of Transmembrane \hat{l}^2 -Barrel Proteins. Annual Review of Analytical Chemistry, 2018, 11, 375-395.	2.8	21
26	The macromolecular architecture of platelet-derived microparticles. Journal of Structural Biology, 2016, 193, 181-187.	1.3	19
27	Evolving protocells to prototissues: rational design of a missing link. Biochemical Society Transactions, 2013, 41, 1159-1165.	1.6	18
28	Seeing and sensing single G protein-coupled receptors by atomic force microscopy. Current Opinion in Cell Biology, 2019, 57, 25-32.	2.6	18
29	Dual energy landscape: The functional state of the βâ€barrel outer membrane protein G molds its unfolding energy landscape. Proteomics, 2010, 10, 4151-4162.	1.3	16
30	Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist. Structure, 2018, 26, 829-838.e4.	1.6	13
31	Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells, 2021, 10, 1960.	1.8	13
32	Profilin 1–mediated cytoskeletal rearrangements regulate integrin function in mouse platelets. Blood Advances, 2018, 2, 1040-1045.	2.5	12
33	Conformational Plasticity of Human Protease-Activated Receptor 1 upon Antagonist- and Agonist-Binding. Structure, 2019, 27, 1517-1526.e3.	1.6	8
34	Complex Stability of Single Proteins Explored by Forced Unfolding Experiments. Biophysical Journal, 2005, 88, L37-L39.	0.2	5
35	Atomic Force Microscopy and Spectroscopy to Probe Single Membrane Proteins in Lipid Bilayers. Methods in Molecular Biology, 2013, 974, 73-110.	0.4	3
36	Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope. Methods in Molecular Biology, 2019, 2003, 107-144.	0.4	0

#	Article	IF	CITATIONS
37	A Structure-Based Analysis of Single Molecule Force Spectroscopy (SMFS) Data for Bacteriorhodopsin and Four Mutants. Lecture Notes in Computer Science, 2006, , 162-172.	1.0	O
38	Probing Single Membrane Proteins by Atomic Force Microscopy., 2009,, 449-485.		0
39	Pattern Recognition of Single-Molecule Force Spectroscopy Data. , 2007, , 3-13.		0