Fred Glover

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/930777/fred-glover-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

248	23,259	57	150
papers	citations	h-index	g-index
251	26,164 ext. citations	3	7.36
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
248	Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange <i>Annals of Operations Research</i> , 2022 , 1-28	3.2	
247	Applications and Computational Advances for Solving the QUBO Model 2022 , 39-56		
246	Focal distance tabu search. Science China Information Sciences, 2021, 64, 1	3.4	2
245	Rejoinder on: Tabu search tutorial. A Graph Drawing Application. <i>Top</i> , 2021 , 29, 363-371	1.3	
244	Tabu search tutorial. A Graph Drawing Application. <i>Top</i> , 2021 , 29, 319-350	1.3	2
243	An extreme-point tabu-search algorithm for fixed-charge network problems. <i>Networks</i> , 2021 , 77, 322-3	40 .6	2
242	Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange. <i>4or</i> , 2020 , 18, 387-417	1.4	3
241	On convergence of scatter search and star paths with directional rounding for 0âll mixed integer programs. <i>Discrete Applied Mathematics</i> , 2020 , 308, 235-235	1	
240	A new approach to generate pattern-efficient sets of non-dominated vectors for multi-objective optimization. <i>Information Sciences</i> , 2020 , 530, 22-42	7.7	2
239	A learning-based memetic algorithm for the multiple vehicle pickup and delivery problem with LIFO loading. <i>Computers and Industrial Engineering</i> , 2020 , 142, 106241	6.4	8
238	Bi-objective optimization of biclustering with binary data. <i>Information Sciences</i> , 2020 , 538, 444-466	7.7	5
237	A matheuristic for a telecommunication network design problem with traffic grooming. <i>Omega</i> , 2020 , 90, 102003	7.2	1
236	A comparative study of formulations for a cross-dock door assignment problem. <i>Omega</i> , 2020 , 91, 1020) 1/52	18
235	A study of two evolutionary/tabu search approaches for the generalized max-mean dispersion problem. <i>Expert Systems With Applications</i> , 2020 , 139, 112856	7.8	6
234	Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking. <i>INFORMS Journal on Computing</i> , 2020 , 32, 74-89	2.4	6
233	Probabilistic Tabu Search for the Cross-Docking Assignment Problem. <i>European Journal of Operational Research</i> , 2019 , 277, 875-885	5.6	18
232	Intensification, Diversification and Learning in metaheuristic optimization. <i>Journal of Heuristics</i> , 2019 , 25, 517-520	1.9	3

231	Diversification-based learning in computing and optimization. <i>Journal of Heuristics</i> , 2019 , 25, 521-537	1.9	5
230	A Two-Individual Based Evolutionary Algorithm for the Flexible Job Shop Scheduling Problem. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2019 , 33, 2262-2271	5	9
229	Hotel Classification Using Meta-Analytics: A Case Study with Cohesive Clustering 2019 , 815-836		
228	Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models. 4or, 2019, 17, 335-371	1.4	36
227	Diversification methods for zero-one optimization. <i>Journal of Heuristics</i> , 2019 , 25, 643-671	1.9	O
226	Clustering-driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem. <i>Journal of Heuristics</i> , 2019 , 25, 629-642	1.9	9
225	Intensification-driven tabu search for the minimum differential dispersion problem. <i>Knowledge-Based Systems</i> , 2019 , 167, 68-86	7.3	6
224	Adaptive tabu search with strategic oscillation for the bipartite boolean quadratic programming problem with partitioned variables. <i>Information Sciences</i> , 2018 , 450, 284-300	7.7	8
223	Solution-based tabu search for the maximum min-sum dispersion problem. <i>Information Sciences</i> , 2018 , 441, 79-94	7.7	15
222	A two-phase tabu-evolutionary algorithm for the 0âll multidimensional knapsack problem. <i>Information Sciences</i> , 2018 , 436-437, 282-301	7.7	29
221	New assignment-based neighborhoods for traveling salesman and routing problems. <i>Networks</i> , 2018 , 71, 170-187	1.6	4
220	A simple multi-wave algorithm for the uncapacitated facility location problem. <i>Frontiers of Engineering Management</i> , 2018 , 5, 451	2.7	9
219	A History of Metaheuristics 2018 , 1-18		23
218	Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems. <i>European Journal of Operational Research</i> , 2018 , 265, 829-842	5.6	7
217	A Tabu search based clustering algorithm and its parallel implementation on Spark. <i>Applied Soft Computing Journal</i> , 2018 , 63, 97-109	7·5	28
216	A History of Metaheuristics 2018 , 791-808		34
215	Adaptive pattern search for large-scale optimization. <i>Applied Intelligence</i> , 2017 , 47, 319-330	4.9	5
214	Effective metaheuristic algorithms for the minimum differential dispersion problem. <i>European Journal of Operational Research</i> , 2017 , 258, 829-843	5.6	26

New relationships for multi-neighborhood search for the minimum linear arrangement problem. Journal of Discrete Algorithms, **2017**, 46-47, 16-24

212	Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical analysis. <i>Networks</i> , 2017 , 70, 79-97	1.6	14
211	Pseudo-centroid clustering. Soft Computing, 2017, 21, 6571-6592	3.5	3
210	Multi-wave algorithms for metaheuristic optimization. <i>Journal of Heuristics</i> , 2016 , 22, 331-358	1.9	5
209	Solving the maximum vertex weight clique problem via binary quadratic programming. <i>Journal of Combinatorial Optimization</i> , 2016 , 32, 531-549	0.9	12
208	f-Flip strategies for unconstrained binary quadratic programming. <i>Annals of Operations Research</i> , 2016 , 238, 651-657	3.2	3
207	A hybrid metaheuristic approach for the capacitated arc routing problem. <i>European Journal of Operational Research</i> , 2016 , 253, 25-39	5.6	39
206	An evolutionary path relinking approach for the quadratic multiple knapsack problem. <i>Knowledge-Based Systems</i> , 2016 , 92, 23-34	7.3	21
205	Doubly-rooted stem-and-cycle ejection chain algorithm for the asymmetric traveling salesman problem. <i>Networks</i> , 2016 , 68, 23-33	1.6	4
204	A learning-based path relinking algorithm for the bandwidth coloring problem. <i>Engineering Applications of Artificial Intelligence</i> , 2016 , 52, 81-91	7.2	8
203	A tabu search algorithm for cohesive clustering problems. <i>Journal of Heuristics</i> , 2015 , 21, 457-477	1.9	13
202	Backtracking based iterated tabu search for equitable coloring. <i>Engineering Applications of Artificial Intelligence</i> , 2015 , 46, 269-278	7.2	10
201	Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization. <i>Information Sciences</i> , 2015 , 296, 46-60	7.7	41
200	Integrating tabu search and VLSN search to develop enhanced algorithms: A case study using bipartite boolean quadratic programs. <i>European Journal of Operational Research</i> , 2015 , 241, 697-707	5.6	26
199	Exact solutions to generalized vertex covering problems: a comparison of two models. <i>Optimization Letters</i> , 2015 , 9, 1331-1339	1.1	9
198	A Complementary Cyber Swarm Algorithm. <i>Advances in Computational Intelligence and Robotics Book Series</i> , 2015 , 50-70	0.4	2
197	The unconstrained binary quadratic programming problem: a survey. <i>Journal of Combinatorial Optimization</i> , 2014 , 28, 58-81	0.9	129
196	A tabu search based memetic algorithm for the maximum diversity problem. <i>Engineering Applications of Artificial Intelligence</i> , 2014 , 27, 103-114	7.2	33

(2011-2014)

195	Exterior Path Relinking for Zero-One Optimization. <i>International Journal of Applied Metaheuristic Computing</i> , 2014 , 5, 1-8	0.8	15
194	Tabu search with strategic oscillation for the quadratic minimum spanning tree. <i>IIE Transactions</i> , 2014 , 46, 414-428		19
193	Strategic oscillation for the quadratic multiple knapsack problem. <i>Computational Optimization and Applications</i> , 2014 , 58, 161-185	1.4	18
192	Backbone guided tabu search for solving the UBQP problem. <i>Journal of Heuristics</i> , 2013 , 19, 679-695	1.9	20
191	Solving large scale Max Cut problems via tabu search. <i>Journal of Heuristics</i> , 2013 , 19, 565-571	1.9	41
190	Introduction to special xQx issue. <i>Journal of Heuristics</i> , 2013 , 19, 525-528	1.9	2
189	Probabilistic GRASP-Tabu Search algorithms for the UBQP problem. <i>Computers and Operations Research</i> , 2013 , 40, 3100-3107	4.6	33
188	Designing effective improvement methods for scatter search: an experimental study on global optimization. <i>Soft Computing</i> , 2013 , 17, 49-62	3.5	11
187	A Complementary Cyber Swarm Algorithm 2013 , 22-41		
186	Binary Unconstrained Quadratic Optimization Problem 2013 , 533-557		4
186 185	Binary Unconstrained Quadratic Optimization Problem 2013 , 533-557 Tabu Search* 2013 , 3261-3362		51
		4.6	
185	Tabu Search* 2013, 3261-3362 A computational study on the quadratic knapsack problem with multiple constraints. <i>Computers</i>	4.6 5.6	51
185	Tabu Search* 2013, 3261-3362 A computational study on the quadratic knapsack problem with multiple constraints. <i>Computers and Operations Research</i> , 2012, 39, 3-11 Path relinking for unconstrained binary quadratic programming. <i>European Journal of Operational</i>		51
185 184 183	Tabu Search* 2013, 3261-3362 A computational study on the quadratic knapsack problem with multiple constraints. <i>Computers and Operations Research</i> , 2012, 39, 3-11 Path relinking for unconstrained binary quadratic programming. <i>European Journal of Operational Research</i> , 2012, 223, 595-604 Multi-neighborhood tabu search for the maximum weight clique problem. <i>Annals of Operations</i>	5.6	51 15 62
185 184 183	Tabu Search* 2013, 3261-3362 A computational study on the quadratic knapsack problem with multiple constraints. <i>Computers and Operations Research</i> , 2012, 39, 3-11 Path relinking for unconstrained binary quadratic programming. <i>European Journal of Operational Research</i> , 2012, 223, 595-604 Multi-neighborhood tabu search for the maximum weight clique problem. <i>Annals of Operations Research</i> , 2012, 196, 611-634 A Multilevel Algorithm for Large Unconstrained Binary Quadratic Optimization. <i>Lecture Notes in</i>	5.6 3.2	51 15 62 55
185 184 183 182	Tabu Search* 2013, 3261-3362 A computational study on the quadratic knapsack problem with multiple constraints. <i>Computers and Operations Research</i> , 2012, 39, 3-11 Path relinking for unconstrained binary quadratic programming. <i>European Journal of Operational Research</i> , 2012, 223, 595-604 Multi-neighborhood tabu search for the maximum weight clique problem. <i>Annals of Operations Research</i> , 2012, 196, 611-634 A Multilevel Algorithm for Large Unconstrained Binary Quadratic Optimization. <i>Lecture Notes in Computer Science</i> , 2012, 395-408 A Complementary Cyber Swarm Algorithm. <i>International Journal of Swarm Intelligence Research</i> ,	5.6 3.2 0.9	511562553

177	Polynomial unconstrained binary optimisation [part 2. International Journal of Metaheuristics, 2011 , 1, 317	0.8	7
176	Neighborhood analysis: a case study on curriculum-based course timetabling. <i>Journal of Heuristics</i> , 2011 , 17, 97-118	1.9	50
175	EM323: a line search based algorithm for solving high-dimensional continuous non-linear optimization problems. <i>Soft Computing</i> , 2011 , 15, 2275-2285	3.5	22
174	Integrated exact, hybrid and metaheuristic learning methods for confidentiality protection. <i>Annals of Operations Research</i> , 2011 , 183, 47-73	3.2	3
173	Hybrid scatter tabu search for unconstrained global optimization. <i>Annals of Operations Research</i> , 2011 , 183, 95-123	3.2	37
172	The case for strategic oscillation. <i>Annals of Operations Research</i> , 2011 , 183, 163-173	3.2	45
171	A filter-and-fan approach to the 2D HP model of the protein folding problem. <i>Annals of Operations Research</i> , 2011 , 188, 389-414	3.2	10
170	A simple and effective algorithm for the MaxMin diversity problem. <i>Annals of Operations Research</i> , 2011 , 186, 275-293	3.2	20
169	Traveling salesman problem heuristics: Leading methods, implementations and latest advances. <i>European Journal of Operational Research</i> , 2011 , 211, 427-441	5.6	127
168	Pseudo-Cut Strategies for Global Optimization. <i>International Journal of Applied Metaheuristic Computing</i> , 2011 , 2, 1-12	0.8	2
167	Effective Variable Fixing and Scoring Strategies for Binary Quadratic Programming. <i>Lecture Notes in Computer Science</i> , 2011 , 72-83	0.9	5
166	Fast two-flip move evaluations for binary unconstrained quadratic optimisation problems. <i>International Journal of Metaheuristics</i> , 2010 , 1, 100	0.8	10
165	Efficient evaluations for solving large 0-1 unconstrained quadratic optimisation problems. <i>International Journal of Metaheuristics</i> , 2010 , 1, 3	0.8	30
164	Adaptive memory programming for constrained global optimization. <i>Computers and Operations Research</i> , 2010 , 37, 1500-1509	4.6	28
163	Diversification-driven tabu search for unconstrained binary quadratic problems. <i>4or</i> , 2010 , 8, 239-253	1.4	46
162	Ejection chain and filter-and-fan methods in combinatorial optimization. <i>Annals of Operations Research</i> , 2010 , 175, 77-105	3.2	13
161	RAMP for the capacitated minimum spanning tree problem. <i>Annals of Operations Research</i> , 2010 , 181, 661-681	3.2	17
160	Creating balanced and connected clusters to improve service delivery routes in logistics planning. Journal of Systems Science and Systems Engineering, 2010, 19, 453-480	1.2	17

159	Alternating control tree search for knapsack/covering problems. <i>Journal of Heuristics</i> , 2010 , 16, 239-25	581.9	9
158	An ejection chain algorithm for the quadratic assignment problem. <i>Networks</i> , 2010 , 56, 188-206	1.6	15
157	Cyber Swarm Algorithms âllmproving particle swarm optimization using adaptive memory strategies. <i>European Journal of Operational Research</i> , 2010 , 201, 377-389	5.6	41
156	A hybrid metaheuristic approach to solving the UBQP problem. <i>European Journal of Operational Research</i> , 2010 , 207, 1254-1262	5.6	62
155	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization âlPart II. International Journal of Applied Metaheuristic Computing, 2010 , 1, 1-17	0.8	3
154	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization Part I. <i>International Journal of Applied Metaheuristic Computing</i> , 2010 , 1, 1-15	0.8	9
153	A Study of Memetic Search with Multi-parent Combination for UBQP. <i>Lecture Notes in Computer Science</i> , 2010 , 154-165	0.9	5
152	Scatter Search and Path-Relinking: Fundamentals, Advances, and Applications. <i>Profiles in Operations Research</i> , 2010 , 87-107	1	50
151	Unidimensional Search for Solving Continuous High-Dimensional Optimization Problems 2009,		10
150	A NEW LEARNING APPROACH TO PROCESS IMPROVEMENT IN A TELECOMMUNICATIONS COMPANY. <i>Production and Operations Management</i> , 2009 , 4, 217-227	3.6	4
150 149		3.6 5.6	89
	COMPANY. <i>Production and Operations Management</i> , 2009 , 4, 217-227 A cooperative parallel tabu search algorithm for the quadratic assignment problem. <i>European</i>		
149	COMPANY. <i>Production and Operations Management</i> , 2009 , 4, 217-227 A cooperative parallel tabu search algorithm for the quadratic assignment problem. <i>European Journal of Operational Research</i> , 2009 , 195, 810-826 Contributions of Professor William W. Cooper in Operations Research and Management Science.	5.6	89
149	COMPANY. Production and Operations Management, 2009, 4, 217-227 A cooperative parallel tabu search algorithm for the quadratic assignment problem. European Journal of Operational Research, 2009, 195, 810-826 Contributions of Professor William W. Cooper in Operations Research and Management Science. European Journal of Operational Research, 2009, 197, 1-16 Finding local optima of high-dimensional functions using direct search methods. European Journal	5.6 5.6	89 80
149 148 147	A cooperative parallel tabu search algorithm for the quadratic assignment problem. European Journal of Operational Research, 2009, 195, 810-826 Contributions of Professor William W. Cooper in Operations Research and Management Science. European Journal of Operational Research, 2009, 197, 1-16 Finding local optima of high-dimensional functions using direct search methods. European Journal of Operational Research, 2009, 195, 31-45 Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem. IEEE	5.6 5.6	89 80 35
149 148 147 146	A cooperative parallel tabu search algorithm for the quadratic assignment problem. European Journal of Operational Research, 2009, 195, 810-826 Contributions of Professor William W. Cooper in Operations Research and Management Science. European Journal of Operational Research, 2009, 197, 1-16 Finding local optima of high-dimensional functions using direct search methods. European Journal of Operational Research, 2009, 195, 31-45 Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39, 579-596 A note on xQx as a modelling and solution framework for the Linear Ordering Problem.	5.6 5.6 5.6	89 80 35 91
149 148 147 146	A cooperative parallel tabu search algorithm for the quadratic assignment problem. European Journal of Operational Research, 2009, 195, 810-826 Contributions of Professor William W. Cooper in Operations Research and Management Science. European Journal of Operational Research, 2009, 197, 1-16 Finding local optima of high-dimensional functions using direct search methods. European Journal of Operational Research, 2009, 195, 31-45 Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39, 579-596 A note on xQx as a modelling and solution framework for the Linear Ordering Problem. International Journal of Operational Research, 2009, 5, 152 Multi-objective Meta-heuristics for the Traveling Salesman Problem with Profits. Mathematical	5.6 5.6 5.6	89 80 35 91

141	Solving group technology problems via clique partitioning. <i>Flexible Services and Manufacturing Journal</i> , 2007 , 18, 77-97		28
140	Infeasible/feasible search trajectories and directional rounding in integer programming. <i>Journal of Heuristics</i> , 2007 , 13, 505-541	1.9	10
139	Tabu searchâ�ncharted domains. <i>Annals of Operations Research</i> , 2007 , 149, 89-98	3.2	9
138	Solving the maximum edge weight clique problem via unconstrained quadratic programming. <i>European Journal of Operational Research</i> , 2007 , 181, 592-597	5.6	49
137	Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization. <i>INFORMS Journal on Computing</i> , 2007 , 19, 328-340	2.4	405
136	Inequalities and Target Objectives for Metaheuristic Search âlPart I: Mixed Binary Optimization 2007 , 439-474		4
135	A Path Relinking Approach for the Multi-Resource Generalized Quadratic Assignment Problem 2007 , 121-135		4
134	Implementation analysis of efficient heuristic algorithms for the traveling salesman problem. <i>Computers and Operations Research</i> , 2006 , 33, 1154-1172	4.6	26
133	A path relinking approach with ejection chains for the generalized assignment problem. <i>European Journal of Operational Research</i> , 2006 , 169, 548-569	5.6	83
132	An effective modeling and solution approach for the generalized independent set problem. <i>Optimization Letters</i> , 2006 , 1, 111-117	1.1	9
131	Selecting Project Portfolios by Optimizing Simulations. <i>Engineering Economist</i> , 2006 , 51, 81-97	0.8	23
130	Principles of scatter search. European Journal of Operational Research, 2006, 169, 359-372	5.6	268
129	Parametric tabu-search for mixed integer programs. Computers and Operations Research, 2006, 33, 2449	9-2494	39
128	Ejection chain and filter-and-fan methods in combinatorial optimization. 4or, 2006, 4, 263-296	1.4	18
127	A Unified Framework for Modeling and Solving Combinatorial Optimization Problems: A Tutorial 2006 , 101-124		6
126	Using the unconstrained quadratic program to model and solve Max 2-SAT problems. <i>International Journal of Operational Research</i> , 2005 , 1, 89	0.9	12
125	Data structures and ejection chains for solving large-scale traveling salesman problems. <i>European Journal of Operational Research</i> , 2005 , 160, 154-171	5.6	22
124	Chvatalâ©omoryâEier cuts for general integer programs. <i>Discrete Optimization</i> , 2005 , 2, 51-69	1	2

(2003-2005)

123	An Unconstrained Quadratic Binary Programming Approach to the Vertex Coloring Problem. <i>Annals of Operations Research</i> , 2005 , 139, 229-241	3.2	31
122	Some Classes of Valid Inequalities and Convex Hull Characterizations for Dynamic Fixed-Charge Problems under Nested Constraints. <i>Annals of Operations Research</i> , 2005 , 140, 215-233	3.2	6
121	The feasibility pump. <i>Mathematical Programming</i> , 2005 , 104, 91-104	2.1	225
120	Clustering of Microarray data via Clique Partitioning. <i>Journal of Combinatorial Optimization</i> , 2005 , 10, 77-92	0.9	31
119	Parametric Ghost Image Processes for Fixed-Charge Problems: A Study of Transportation Networks. <i>Journal of Heuristics</i> , 2005 , 11, 307-336	1.9	21
118	Further Extension of the TSP Assign Neighborhood. <i>Journal of Heuristics</i> , 2005 , 11, 501-505	1.9	3
117	A new modeling and solution approach for the number partitioning problem. <i>Journal of Applied Mathematics and Decision Sciences</i> , 2005 , 2005, 113-121		14
116	Metaheuristic Agent Processes (MAPS) 2005 , 1-28		
115	Adaptive Memory Projection Methods for Integer Programming 2005 , 425-440		15
114	A Hybrid Improvement Heuristic for the One-Dimensional Bin Packing Problem. <i>Journal of Heuristics</i> , 2004 , 10, 205-229	1.9	82
113	A very large-scale neighborhood search algorithm for the multi-resource generalized assignment problem. <i>Discrete Optimization</i> , 2004 , 1, 87-98	1	42
112	A unified modeling and solution framework for combinatorial optimization problems. <i>OR Spectrum</i> , 2004 , 26, 237-250	1.9	71
111	Adaptive memory search for Boolean optimization problems. <i>Discrete Applied Mathematics</i> , 2004 , 142, 99-109	1	20
110	Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs. <i>Discrete Optimization</i> , 2004 , 1, 99-120	1	58
109	An Ejection Chain Approach for the Generalized Assignment Problem. <i>INFORMS Journal on Computing</i> , 2004 , 16, 133-151	2.4	103
108	Scatter Search and Path Relinking: Foundations and Advanced Designs. <i>Studies in Fuzziness and Soft Computing</i> , 2004 , 87-99	0.7	19
107	Tutorial on Surrogate Constraint Approaches for Optimization in Graphs. <i>Journal of Heuristics</i> , 2003 , 9, 175-227	1.9	16
106	Foundation-penalty cuts for mixed-integer programs. <i>Operations Research Letters</i> , 2003 , 31, 245-253	1	11

105	Tabu search and finite convergence. Discrete Applied Mathematics, 2002, 119, 3-36	1	46
104	One-pass heuristics for large-scale unconstrained binary quadratic problems. <i>European Journal of Operational Research</i> , 2002 , 137, 272-287	5.6	47
103	Resolution Search and Dynamic Branch-and-Bound. Journal of Combinatorial Optimization, 2002, 6, 401-	423)	4
102	Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions. <i>Annals of Operations Research</i> , 2002 , 117, 71-93	3.2	33
101	AN EFFECTIVE APPROACH FOR SOLVING THE BINARY ASSIGNMENT PROBLEM WITH SIDE CONSTRAINTS. International Journal of Information Technology and Decision Making, 2002 , 01, 121-129	2.8	6
100	Solving Quadratic Knapsack Problems by Reformulation and Tabu Search: Single Constraint Case. Network Optimization Problems: Algorithms, Applications and Complexity, 2002, 111-121		4
99	Reducing the bandwidth of a sparse matrix with tabu search. <i>European Journal of Operational Research</i> , 2001 , 135, 450-459	5.6	68
98	Construction heuristics for the asymmetric TSP. <i>European Journal of Operational Research</i> , 2001 , 129, 555-568	5.6	65
97	An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem. <i>Journal of Global Optimization</i> , 2001 , 21, 397-414	1.5	87
96	Tabu Search and Evolutionary Scatter Search for âllree-StarâlNetwork Problems, with Applications to Leased-Line Network Design 2001 , 57-77		3
95	The deterministic multi-item dynamic lot size problem with joint business volume discount. <i>Annals of Operations Research</i> , 2000 , 96, 317-337	3.2	29
94	Multi-Start and Strategic Oscillation Methods âlPrinciples to Exploit Adaptive Memory. <i>Operations Research/Computer Science Interfaces Series</i> , 2000 , 1-23	0.3	45
93	Scatter Search to Generate Diverse MIP Solutions. <i>Operations Research/ Computer Science Interfaces Series</i> , 2000 , 299-317	0.3	22
92	Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory. <i>INFORMS Journal on Computing</i> , 1999 , 11, 198-204	2.4	116
91	Tabu Search with Critical Event Memory: An Enhanced Application for Binary Quadratic Programs 1999 , 93-109		18
90	Solving zero-one mixed integer programming problems using tabu search. <i>European Journal of Operational Research</i> , 1998 , 106, 624-658	5.6	74
89	Tabu search âlwellsprings and challenges. <i>European Journal of Operational Research</i> , 1998 , 106, 221-225	5.6	20
88	Heuristic algorithms for the maximum diversity problem. <i>Journal of Information and Optimization Sciences</i> , 1998 , 19, 109-132	1.1	54

87	A template for scatter search and path relinking. Lecture Notes in Computer Science, 1998, 1-51	0.9	216
86	Adaptive Memory Tabu Search for Binary Quadratic Programs. <i>Management Science</i> , 1998 , 44, 336-345	3.9	140
85	Integrative Population Analysis for Better Solutions to Large-Scale Mathematical Programs. <i>Applied Optimization</i> , 1998 , 212-239		3
84	Tabu Search 1997 ,		2326
83	Tabu Search and Ejection ChainsâApplication to a Node Weighted Version of the Cardinality-Constrained TSP. <i>Management Science</i> , 1997 , 43, 908-921	3.9	14
82	Generating Cuts from Surrogate Constraint Analysis for Zero-One and Multiple Choice Programming. <i>Computational Optimization and Applications</i> , 1997 , 8, 151-172	1.4	19
81	Tabu search for dynamic routing communications network design. <i>Telecommunication Systems</i> , 1997 , 8, 55-77	2.3	19
80	General Purpose Heuristics for Integer Programmingâ P art II. <i>Journal of Heuristics</i> , 1997 , 3, 161-179	1.9	33
79	General purpose heuristics for integer programmingâ P art I. <i>Journal of Heuristics</i> , 1997 , 2, 343-358	1.9	36
78	Surrogate constraint analysisâliew heuristics and learning schemes for satisfiability problems. <i>DIMACS Series in Discrete Mathematics and Theoretical Computer Science</i> , 1997 , 537-572		8
77	Tabu search for graph partitioning. Annals of Operations Research, 1996, 63, 209-232	3.2	43
76	Using tabu search to solve the Steiner tree-star problem in telecommunications network design. <i>Telecommunication Systems</i> , 1996 , 6, 117-125	2.3	27
75	Ejection chains, reference structures and alternating path methods for traveling salesman problems. <i>Discrete Applied Mathematics</i> , 1996 , 65, 223-253	1	166
74	Finding a best traveling salesman 4-opt move in the same time as a best 2-opt move. <i>Journal of Heuristics</i> , 1996 , 2, 169	1.9	18
73	Critical Event Tabu Search for Multidimensional Knapsack Problems 1996 , 407-427		51
72	Probabilistic Move Selection in Tabu Search for Zero-One Mixed Integer Programming Problems 1996 , 467-487		15
71	Tabu search for the multilevel generalized assignment problem. <i>European Journal of Operational Research</i> , 1995 , 82, 176-189	5.6	128
70	Genetic algorithms and tabu search: Hybrids for optimization. <i>Computers and Operations Research</i> , 1995 , 22, 111-134	4.6	166

69	New results for aggregating integer-valued equations. <i>Annals of Operations Research</i> , 1995 , 58, 227-247	2 3.2	5
68	Scatter search and star-paths: beyond the genetic metaphor. <i>OR Spectrum</i> , 1995 , 17, 125-137	1.9	53
67	Tabu Thresholding: Improved Search by Nonmonotonic Trajectories. <i>ORSA Journal on Computing</i> , 1995 , 7, 426-442		75
66	Genetic algorithms and scatter search: unsuspected potentials. <i>Statistics and Computing</i> , 1994 , 4, 131	1.8	79
65	Optimization by ghost image processes in neural networks. <i>Computers and Operations Research</i> , 1994 , 21, 801-822	4.6	13
64	Applying tabu search with influential diversification to multiprocessor scheduling. <i>Computers and Operations Research</i> , 1994 , 21, 877-884	4.6	40
63	A study of diversification strategies for the quadratic assignment problem. <i>Computers and Operations Research</i> , 1994 , 21, 885-893	4.6	34
62	Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). <i>Discrete Applied Mathematics</i> , 1994 , 49, 231-255	1	132
61	Bandwidth Packing: A Tabu Search Approach. <i>Management Science</i> , 1993 , 39, 492-500	3.9	71
60	Extensions of the Petal Method for Vehicle Routeing. <i>Journal of the Operational Research Society</i> , 1993 , 44, 289-296	2	51
59	Integrating target analysis and tabu search for improved scheduling systems. <i>Expert Systems With Applications</i> , 1993 , 6, 287-297	7.8	53
58	Intelligent scheduling with tabu search: An application to jobs with linear delay penalties and sequence-dependent setup costs and times. <i>Applied Intelligence</i> , 1993 , 3, 159-172	4.9	22
57	Analyzing and Modeling the Maximum Diversity Problem by Zero-One Programming*. <i>Decision Sciences</i> , 1993 , 24, 1171-1185	3.7	114
56	A user's guide to tabu search. <i>Annals of Operations Research</i> , 1993 , 41, 1-28	3.2	465
55	Strong formulations and cutting planes for designing digital data service networks. <i>Telecommunication Systems</i> , 1993 , 2, 261-274	2.3	25
54	NEW EJECTION CHAIN AND ALTERNATING PATH METHODS FOR TRAVELING SALESMAN PROBLEMS 1992 , 491-509		35
53	1992,		52
52	Least-cost network topology design for a new service. <i>Annals of Operations Research</i> , 1991 , 33, 351-362	2 3.2	36

51	Surrogate Constraints in Integer Programming. <i>Journal of Information and Optimization Sciences</i> , 1991 , 12, 219-228	1.1	4
50	Netform Modeling and Applications. <i>Interfaces</i> , 1990 , 20, 7-27	0.7	30
49	Improved Linear Programming Models for Discriminant Analysis*. <i>Decision Sciences</i> , 1990 , 21, 771-785	3.7	174
48	Artificial intelligence, heuristic frameworks and tabu search. <i>Managerial and Decision Economics</i> , 1990 , 11, 365-375	1.1	80
47	Tabu Searchâ P art II. <i>ORSA Journal on Computing</i> , 1990 , 2, 4-32		2426
46	Tabu Search: A Tutorial. <i>Interfaces</i> , 1990 , 20, 74-94	0.7	629
45	Tabu Searchâ P art I. <i>ORSA Journal on Computing</i> , 1989 , 1, 190-206		4081
44	A network-related nuclear power plant model with an intelligent branch-and-bound solution approach. <i>Annals of Operations Research</i> , 1989 , 21, 317-331	3.2	7
43	A modeling/solution approach for optimal deployment of a weapons arsenal. <i>Annals of Operations Research</i> , 1989 , 20, 159-177	3.2	
42	New approaches for heuristic search: A bilateral linkage with artificial intelligence. <i>European Journal of Operational Research</i> , 1989 , 39, 119-130	5.6	178
41	Logical testing for new approaches to mathematical programming modeling and analysis. <i>Computer Science in Economics and Management</i> , 1989 , 2, 49-64		
40	A NEW CLASS OF MODELS FOR THE DISCRIMINANT PROBLEM. <i>Decision Sciences</i> , 1988 , 19, 269-280	3.7	102
39	A Stochastic Generalized Network Model and Large-Scale Mean-Variance Algorithm for Portfolio Selection. <i>Journal of Information and Optimization Sciences</i> , 1988 , 9, 299-316	1.1	7
38	A Simple Criterion for a Graph to have a Perfect Matching. <i>Journal of Information and Optimization Sciences</i> , 1987 , 8, 271-273	1.1	1
37	Threshold assignment algorithm. <i>Mathematical Programming Studies</i> , 1986 , 12-37		14
36	Future paths for integer programming and links to artificial intelligence. <i>Computers and Operations Research</i> , 1986 , 13, 533-549	4.6	2270
35	The general employee scheduling problem. An integration of MS and AI. <i>Computers and Operations Research</i> , 1986 , 13, 563-573	4.6	170
34	EVALUATING ALTERNATIVE LINEAR PROGRAMMING MODELS TO SOLVE THE TWO-GROUP DISCRIMINANT PROBLEM. <i>Decision Sciences</i> , 1986 , 17, 151-162	3.7	177

33	Notes and Communications RESOLVING CERTAIN DIFFICULTIES AND IMPROVING THE CLASSIFICATION POWER OF LP DISCRIMINANT ANALYSIS FORMULATIONS. <i>Decision Sciences</i> , 1986 , 17, 589-595	3.7	72
32	A Netform System for Resource Planning in the U.S. Bureau of Land Management. <i>Journal of the Operational Research Society</i> , 1984 , 35, 605-616	2	9
31	A heuristic programming approach to the employee scheduling problem and some thoughts on âlhanagerial robotsâll <i>Journal of Operations Management</i> , 1984 , 4, 113-128	5.2	24
30	A primal simplex variant for the maximum-flow problem. <i>Naval Research Logistics Quarterly</i> , 1984 , 31, 41-61		6
29	A note on specialized versus unspecialized methods for maximum-flow problems. <i>Naval Research Logistics Quarterly</i> , 1984 , 31, 63-65		2
28	The Passenger-Mix Problem in the Scheduled Airlines. <i>Interfaces</i> , 1982 , 12, 73-80	0.7	123
27	Recent Developments in Computer Implementation Technology for Network Flow Algorithms. <i>Infor</i> , 1982 , 20, 433-452	0.5	6
26	A New Optimization Method for Large Scale Fixed Charge Transportation Problems. <i>Operations Research</i> , 1981 , 29, 448-463	2.3	81
25	Simple but powerful goal programming models for discriminant problems. <i>European Journal of Operational Research</i> , 1981 , 7, 44-60	5.6	265
24	Applications and Implementation. <i>Decision Sciences</i> , 1981 , 12, 68-74	3.7	177
23	A Network Augmenting Path Basis Algorithm for Transshipment Problems. <i>Lecture Notes in Economics and Mathematical Systems</i> , 1980 , 250-274	0.4	2
22	Enhancements Of Spanning Tree Labelling Procedures For Network Optimization. <i>Infor</i> , 1979 , 17, 16-34	0.5	38
21	Improved Computer-Based Planning Techniques, Part 1. Interfaces, 1978, 8, 16-25	0.7	28
20	HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS. <i>Decision Sciences</i> , 1977 , 8, 156-166	3.7	962
19	Reducing the Size of Some IP Formulations by Substitution. <i>Journal of the Operational Research Society</i> , 1976 , 27, 261-263	2	1
18	Surrogate Constraint Duality in Mathematical Programming. <i>Operations Research</i> , 1975 , 23, 434-451	2.3	133
17	Improved Linear Integer Programming Formulations of Nonlinear Integer Problems. <i>Management Science</i> , 1975 , 22, 455-460	3.9	509
16	Technical Noteâtionverting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program. <i>Operations Research</i> , 1974 , 22, 180-182	2.3	269

LIST OF PUBLICATIONS

15	A Computation Study on Start Procedures, Basis Change Criteria, and Solution Algorithms for Transportation Problems. <i>Management Science</i> , 1974 , 20, 793-813	3.9	115
14	Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems. <i>Operations Research</i> , 1973 , 21, 156-161	2.3	76
13	The Augmented Predecessor Index Method for Locating Stepping-Stone Paths and Assigning Dual Prices in Distribution Problems. <i>Transportation Science</i> , 1972 , 6, 171-179	4.4	66
12	Cut search methods in integer programming. <i>Mathematical Programming</i> , 1972 , 3-3, 86-100	2.1	11
11	Flows in Arborescences. <i>Management Science</i> , 1971 , 17, 568-586	3.9	15
10	An Intersection Cut from the Dual of the Unit Hypercube. <i>Operations Research</i> , 1971 , 19, 40-44	2.3	14
9	Surrogate Constraints. <i>Operations Research</i> , 1968 , 16, 741-749	2.3	144
8	Maximum matching in a convex bipartite graph. Naval Research Logistics Quarterly, 1967 , 14, 313-316		115
7	A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem. <i>Operations Research</i> , 1965 , 13, 879-919	2.3	207
6	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization Part I1-16		
5	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization âlPart II17	-33	
4	Pseudo-Cut Strategies for Global Optimization188-198		
3	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization Part 1684-0	698	
2	Solving Clique Partitioning Problems: A Comparison of Models and Commercial Solvers. International Journal of Information Technology and Decision Making,1-23	2.8	3
1	Quantum bridge analytics I: a tutorial on formulating and using QUBO models. <i>Annals of Operations Research</i> ,1	3.2	3