Fred Glover

List of Publications by Citations

Source: https://exaly.com/author-pdf/930777/fred-glover-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 248
 23,259
 57
 150

 papers
 citations
 h-index
 g-index

 251
 26,164
 3
 7.36

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
248	Tabu Searchâ B art I. <i>ORSA Journal on Computing</i> , 1989 , 1, 190-206		4081
247	Tabu Searchâ P art II. <i>ORSA Journal on Computing</i> , 1990 , 2, 4-32		2426
246	Tabu Search 1997 ,		2326
245	Future paths for integer programming and links to artificial intelligence. <i>Computers and Operations Research</i> , 1986 , 13, 533-549	4.6	2270
244	HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS. <i>Decision Sciences</i> , 1977 , 8, 156-166	3.7	962
243	Tabu Search: A Tutorial. <i>Interfaces</i> , 1990 , 20, 74-94	0.7	629
242	Improved Linear Integer Programming Formulations of Nonlinear Integer Problems. <i>Management Science</i> , 1975 , 22, 455-460	3.9	509
241	A user's guide to tabu search. Annals of Operations Research, 1993, 41, 1-28	3.2	465
240	Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization. <i>INFORMS Journal on Computing</i> , 2007 , 19, 328-340	2.4	405
239	Technical NoteâtIonverting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program. <i>Operations Research</i> , 1974 , 22, 180-182	2.3	269
238	Principles of scatter search. European Journal of Operational Research, 2006, 169, 359-372	5.6	268
237	Simple but powerful goal programming models for discriminant problems. <i>European Journal of Operational Research</i> , 1981 , 7, 44-60	5.6	265
236	The feasibility pump. <i>Mathematical Programming</i> , 2005 , 104, 91-104	2.1	225
235	A template for scatter search and path relinking. Lecture Notes in Computer Science, 1998, 1-51	0.9	216
234	A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem. <i>Operations Research</i> , 1965 , 13, 879-919	2.3	207
233	New approaches for heuristic search: A bilateral linkage with artificial intelligence. <i>European Journal of Operational Research</i> , 1989 , 39, 119-130	5.6	178
232	EVALUATING ALTERNATIVE LINEAR PROGRAMMING MODELS TO SOLVE THE TWO-GROUP DISCRIMINANT PROBLEM. <i>Decision Sciences</i> , 1986 , 17, 151-162	3.7	177

231	Applications and Implementation. <i>Decision Sciences</i> , 1981 , 12, 68-74	3.7	177
230	Improved Linear Programming Models for Discriminant Analysis*. <i>Decision Sciences</i> , 1990 , 21, 771-785	3.7	174
229	The general employee scheduling problem. An integration of MS and AI. <i>Computers and Operations Research</i> , 1986 , 13, 563-573	4.6	170
228	Genetic algorithms and tabu search: Hybrids for optimization. <i>Computers and Operations Research</i> , 1995 , 22, 111-134	4.6	166
227	Ejection chains, reference structures and alternating path methods for traveling salesman problems. <i>Discrete Applied Mathematics</i> , 1996 , 65, 223-253	1	166
226	Surrogate Constraints. <i>Operations Research</i> , 1968 , 16, 741-749	2.3	144
225	Adaptive Memory Tabu Search for Binary Quadratic Programs. <i>Management Science</i> , 1998 , 44, 336-345	3.9	140
224	Surrogate Constraint Duality in Mathematical Programming. <i>Operations Research</i> , 1975 , 23, 434-451	2.3	133
223	Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). <i>Discrete Applied Mathematics</i> , 1994 , 49, 231-255	1	132
222	The unconstrained binary quadratic programming problem: a survey. <i>Journal of Combinatorial Optimization</i> , 2014 , 28, 58-81	0.9	129
221	Tabu search for the multilevel generalized assignment problem. <i>European Journal of Operational Research</i> , 1995 , 82, 176-189	5.6	128
220	Traveling salesman problem heuristics: Leading methods, implementations and latest advances. <i>European Journal of Operational Research</i> , 2011 , 211, 427-441	5.6	127
219	The Passenger-Mix Problem in the Scheduled Airlines. <i>Interfaces</i> , 1982 , 12, 73-80	0.7	123
218	Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory. <i>INFORMS Journal on Computing</i> , 1999 , 11, 198-204	2.4	116
217	A Computation Study on Start Procedures, Basis Change Criteria, and Solution Algorithms for Transportation Problems. <i>Management Science</i> , 1974 , 20, 793-813	3.9	115
216	Maximum matching in a convex bipartite graph. Naval Research Logistics Quarterly, 1967, 14, 313-316		115
215	Analyzing and Modeling the Maximum Diversity Problem by Zero-One Programming*. <i>Decision Sciences</i> , 1993 , 24, 1171-1185	3.7	114
214	An Ejection Chain Approach for the Generalized Assignment Problem. <i>INFORMS Journal on Computing</i> , 2004 , 16, 133-151	2.4	103

213	A NEW CLASS OF MODELS FOR THE DISCRIMINANT PROBLEM. Decision Sciences, 1988, 19, 269-280	3.7	102
212	Multistart Tabu Search and Diversification Strategies for the Quadratic Assignment Problem. <i>IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans</i> , 2009 , 39, 579-596		91
211	A cooperative parallel tabu search algorithm for the quadratic assignment problem. <i>European Journal of Operational Research</i> , 2009 , 195, 810-826	5.6	89
210	An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem. <i>Journal of Global Optimization</i> , 2001 , 21, 397-414	1.5	87
209	A path relinking approach with ejection chains for the generalized assignment problem. <i>European Journal of Operational Research</i> , 2006 , 169, 548-569	5.6	83
208	A Hybrid Improvement Heuristic for the One-Dimensional Bin Packing Problem. <i>Journal of Heuristics</i> , 2004 , 10, 205-229	1.9	82
207	A New Optimization Method for Large Scale Fixed Charge Transportation Problems. <i>Operations Research</i> , 1981 , 29, 448-463	2.3	81
206	Contributions of Professor William W. Cooper in Operations Research and Management Science. <i>European Journal of Operational Research</i> , 2009 , 197, 1-16	5.6	80
205	Artificial intelligence, heuristic frameworks and tabu search. <i>Managerial and Decision Economics</i> , 1990 , 11, 365-375	1.1	80
204	Genetic algorithms and scatter search: unsuspected potentials. Statistics and Computing, 1994, 4, 131	1.8	79
203	Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems. <i>Operations Research</i> , 1973 , 21, 156-161	2.3	76
202	Tabu Thresholding: Improved Search by Nonmonotonic Trajectories. <i>ORSA Journal on Computing</i> , 1995 , 7, 426-442		75
201	Solving zero-one mixed integer programming problems using tabu search. <i>European Journal of Operational Research</i> , 1998 , 106, 624-658	5.6	74
200	Notes and Communications RESOLVING CERTAIN DIFFICULTIES AND IMPROVING THE CLASSIFICATION POWER OF LP DISCRIMINANT ANALYSIS FORMULATIONS. <i>Decision Sciences</i> , 1986 , 17, 589-595	3.7	7 ²
199	A unified modeling and solution framework for combinatorial optimization problems. <i>OR Spectrum</i> , 2004 , 26, 237-250	1.9	71
198	Bandwidth Packing: A Tabu Search Approach. <i>Management Science</i> , 1993 , 39, 492-500	3.9	71
197	Reducing the bandwidth of a sparse matrix with tabu search. <i>European Journal of Operational Research</i> , 2001 , 135, 450-459	5.6	68
196	The Augmented Predecessor Index Method for Locating Stepping-Stone Paths and Assigning Dual Prices in Distribution Problems. <i>Transportation Science</i> , 1972 , 6, 171-179	4.4	66

(2002-2001)

195	Construction heuristics for the asymmetric TSP. <i>European Journal of Operational Research</i> , 2001 , 129, 555-568	5.6	65
194	Path relinking for unconstrained binary quadratic programming. <i>European Journal of Operational Research</i> , 2012 , 223, 595-604	5.6	62
193	A hybrid metaheuristic approach to solving the UBQP problem. <i>European Journal of Operational Research</i> , 2010 , 207, 1254-1262	5.6	62
192	Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs. <i>Discrete Optimization</i> , 2004 , 1, 99-120	1	58
191	Multi-neighborhood tabu search for the maximum weight clique problem. <i>Annals of Operations Research</i> , 2012 , 196, 611-634	3.2	55
190	Heuristic algorithms for the maximum diversity problem. <i>Journal of Information and Optimization Sciences</i> , 1998 , 19, 109-132	1.1	54
189	Scatter search and star-paths: beyond the genetic metaphor. OR Spectrum, 1995, 17, 125-137	1.9	53
188	Integrating target analysis and tabu search for improved scheduling systems. <i>Expert Systems With Applications</i> , 1993 , 6, 287-297	7.8	53
187	1992,		52
186	Critical Event Tabu Search for Multidimensional Knapsack Problems 1996 , 407-427		51
185	Extensions of the Petal Method for Vehicle Routeing. <i>Journal of the Operational Research Society</i> , 1993 , 44, 289-296	2	51
184	Tabu Search* 2013 , 3261-3362		51
183	Neighborhood analysis: a case study on curriculum-based course timetabling. <i>Journal of Heuristics</i> , 2011 , 17, 97-118	1.9	50
182	Scatter Search and Path-Relinking: Fundamentals, Advances, and Applications. <i>Profiles in Operations Research</i> , 2010 , 87-107	1	50
181	Solving the maximum edge weight clique problem via unconstrained quadratic programming. <i>European Journal of Operational Research</i> , 2007 , 181, 592-597	5.6	49
180	One-pass heuristics for large-scale unconstrained binary quadratic problems. <i>European Journal of Operational Research</i> , 2002 , 137, 272-287	5.6	47
179	Diversification-driven tabu search for unconstrained binary quadratic problems. <i>4or</i> , 2010 , 8, 239-253	1.4	46
178	Tabu search and finite convergence. <i>Discrete Applied Mathematics</i> , 2002 , 119, 3-36	1	46

177	The case for strategic oscillation. Annals of Operations Research, 2011, 183, 163-173	3.2	45
176	Multi-Start and Strategic Oscillation Methods âlPrinciples to Exploit Adaptive Memory. <i>Operations Research/ Computer Science Interfaces Series</i> , 2000 , 1-23	0.3	45
175	Multi-objective Meta-heuristics for the Traveling Salesman Problem with Profits. <i>Mathematical Modelling and Algorithms</i> , 2008 , 7, 177-195		43
174	Tabu search for graph partitioning. <i>Annals of Operations Research</i> , 1996 , 63, 209-232	3.2	43
173	A very large-scale neighborhood search algorithm for the multi-resource generalized assignment problem. <i>Discrete Optimization</i> , 2004 , 1, 87-98	1	42
172	Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization. <i>Information Sciences</i> , 2015 , 296, 46-60	7.7	41
171	Solving large scale Max Cut problems via tabu search. <i>Journal of Heuristics</i> , 2013 , 19, 565-571	1.9	41
170	Cyber Swarm Algorithms âllmproving particle swarm optimization using adaptive memory strategies. <i>European Journal of Operational Research</i> , 2010 , 201, 377-389	5.6	41
169	Applying tabu search with influential diversification to multiprocessor scheduling. <i>Computers and Operations Research</i> , 1994 , 21, 877-884	4.6	40
168	A hybrid metaheuristic approach for the capacitated arc routing problem. <i>European Journal of Operational Research</i> , 2016 , 253, 25-39	5.6	39
167	Parametric tabu-search for mixed integer programs. Computers and Operations Research, 2006, 33, 2449	9-2494	39
166	Enhancements Of Spanning Tree Labelling Procedures For Network Optimization. <i>Infor</i> , 1979 , 17, 16-34	0.5	38
165	Hybrid scatter tabu search for unconstrained global optimization. <i>Annals of Operations Research</i> , 2011 , 183, 95-123	3.2	37
164	General purpose heuristics for integer programmingâ B art I. <i>Journal of Heuristics</i> , 1997 , 2, 343-358	1.9	36
163	Least-cost network topology design for a new service. <i>Annals of Operations Research</i> , 1991 , 33, 351-362	3.2	36
162	Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models. 4or, 2019, 17, 335-371	1.4	36
161	Finding local optima of high-dimensional functions using direct search methods. <i>European Journal of Operational Research</i> , 2009 , 195, 31-45	5.6	35
160	NEW EJECTION CHAIN AND ALTERNATING PATH METHODS FOR TRAVELING SALESMAN PROBLEMS 1992 , 491-509		35

(2017-1994)

159	A study of diversification strategies for the quadratic assignment problem. <i>Computers and Operations Research</i> , 1994 , 21, 885-893	4.6	34	
158	A History of Metaheuristics 2018 , 791-808		34	
157	A tabu search based memetic algorithm for the maximum diversity problem. <i>Engineering Applications of Artificial Intelligence</i> , 2014 , 27, 103-114	7.2	33	
156	Probabilistic GRASP-Tabu Search algorithms for the UBQP problem. <i>Computers and Operations Research</i> , 2013 , 40, 3100-3107	4.6	33	
155	General Purpose Heuristics for Integer Programmingâ P art II. <i>Journal of Heuristics</i> , 1997 , 3, 161-179	1.9	33	
154	Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions. Annals of Operations Research, 2002, 117, 71-93	3.2	33	
153	An Unconstrained Quadratic Binary Programming Approach to the Vertex Coloring Problem. <i>Annals of Operations Research</i> , 2005 , 139, 229-241	3.2	31	
152	Clustering of Microarray data via Clique Partitioning. <i>Journal of Combinatorial Optimization</i> , 2005 , 10, 77-92	0.9	31	
151	Efficient evaluations for solving large 0-1 unconstrained quadratic optimisation problems. <i>International Journal of Metaheuristics</i> , 2010 , 1, 3	0.8	30	
150	Netform Modeling and Applications. <i>Interfaces</i> , 1990 , 20, 7-27	0.7	30	
149	A two-phase tabu-evolutionary algorithm for the 0âll multidimensional knapsack problem. <i>Information Sciences</i> , 2018 , 436-437, 282-301	7.7	29	
148	The deterministic multi-item dynamic lot size problem with joint business volume discount. <i>Annals of Operations Research</i> , 2000 , 96, 317-337	3.2	29	
147	Adaptive memory programming for constrained global optimization. <i>Computers and Operations Research</i> , 2010 , 37, 1500-1509	4.6	28	
146	Solving group technology problems via clique partitioning. <i>Flexible Services and Manufacturing Journal</i> , 2007 , 18, 77-97		28	
145	Improved Computer-Based Planning Techniques, Part 1. Interfaces, 1978, 8, 16-25	0.7	28	
144	A Tabu search based clustering algorithm and its parallel implementation on Spark. <i>Applied Soft Computing Journal</i> , 2018 , 63, 97-109	7.5	28	
143	Using tabu search to solve the Steiner tree-star problem in telecommunications network design. <i>Telecommunication Systems</i> , 1996 , 6, 117-125	2.3	27	
142	Effective metaheuristic algorithms for the minimum differential dispersion problem. <i>European Journal of Operational Research</i> , 2017 , 258, 829-843	5.6	26	

141	Integrating tabu search and VLSN search to develop enhanced algorithms: A case study using bipartite boolean quadratic programs. <i>European Journal of Operational Research</i> , 2015 , 241, 697-707	5.6	26
140	Implementation analysis of efficient heuristic algorithms for the traveling salesman problem. <i>Computers and Operations Research</i> , 2006 , 33, 1154-1172	4.6	26
139	Strong formulations and cutting planes for designing digital data service networks. <i>Telecommunication Systems</i> , 1993 , 2, 261-274	2.3	25
138	A heuristic programming approach to the employee scheduling problem and some thoughts on âlhanagerial robotsâll <i>Journal of Operations Management</i> , 1984 , 4, 113-128	5.2	24
137	Selecting Project Portfolios by Optimizing Simulations. <i>Engineering Economist</i> , 2006 , 51, 81-97	0.8	23
136	A History of Metaheuristics 2018 , 1-18		23
135	EM323: a line search based algorithm for solving high-dimensional continuous non-linear optimization problems. <i>Soft Computing</i> , 2011 , 15, 2275-2285	3.5	22
134	Data structures and ejection chains for solving large-scale traveling salesman problems. <i>European Journal of Operational Research</i> , 2005 , 160, 154-171	5.6	22
133	Intelligent scheduling with tabu search: An application to jobs with linear delay penalties and sequence-dependent setup costs and times. <i>Applied Intelligence</i> , 1993 , 3, 159-172	4.9	22
132	Scatter Search to Generate Diverse MIP Solutions. <i>Operations Research/ Computer Science Interfaces Series</i> , 2000 , 299-317	0.3	22
131	An evolutionary path relinking approach for the quadratic multiple knapsack problem. <i>Knowledge-Based Systems</i> , 2016 , 92, 23-34	7.3	21
130	Parametric Ghost Image Processes for Fixed-Charge Problems: A Study of Transportation Networks. <i>Journal of Heuristics</i> , 2005 , 11, 307-336	1.9	21
129	Backbone guided tabu search for solving the UBQP problem. <i>Journal of Heuristics</i> , 2013 , 19, 679-695	1.9	20
128	A simple and effective algorithm for the MaxMin diversity problem. <i>Annals of Operations Research</i> , 2011 , 186, 275-293	3.2	20
127	Tabu search âlwellsprings and challenges. <i>European Journal of Operational Research</i> , 1998 , 106, 221-22	5 5.6	20
126	Adaptive memory search for Boolean optimization problems. <i>Discrete Applied Mathematics</i> , 2004 , 142, 99-109	1	20
125	Tabu search with strategic oscillation for the quadratic minimum spanning tree. <i>IIE Transactions</i> , 2014 , 46, 414-428		19
124	Generating Cuts from Surrogate Constraint Analysis for Zero-One and Multiple Choice Programming. <i>Computational Optimization and Applications</i> , 1997 , 8, 151-172	1.4	19

123	Tabu search for dynamic routing communications network design. <i>Telecommunication Systems</i> , 1997 , 8, 55-77	2.3	19	
122	Scatter Search and Path Relinking: Foundations and Advanced Designs. <i>Studies in Fuzziness and Soft Computing</i> , 2004 , 87-99	0.7	19	
121	Probabilistic Tabu Search for the Cross-Docking Assignment Problem. <i>European Journal of Operational Research</i> , 2019 , 277, 875-885	5.6	18	
120	Strategic oscillation for the quadratic multiple knapsack problem. <i>Computational Optimization and Applications</i> , 2014 , 58, 161-185	1.4	18	
119	Ejection chain and filter-and-fan methods in combinatorial optimization. 4or, 2006, 4, 263-296	1.4	18	
118	Finding a best traveling salesman 4-opt move in the same time as a best 2-opt move. <i>Journal of Heuristics</i> , 1996 , 2, 169	1.9	18	
117	A comparative study of formulations for a cross-dock door assignment problem. <i>Omega</i> , 2020 , 91, 1020	1 /5 2	18	
116	Tabu Search with Critical Event Memory: An Enhanced Application for Binary Quadratic Programs 1999 , 93-109		18	
115	RAMP for the capacitated minimum spanning tree problem. <i>Annals of Operations Research</i> , 2010 , 181, 661-681	3.2	17	
114	Creating balanced and connected clusters to improve service delivery routes in logistics planning. Journal of Systems Science and Systems Engineering, 2010 , 19, 453-480	1.2	17	
113	Tutorial on Surrogate Constraint Approaches for Optimization in Graphs. <i>Journal of Heuristics</i> , 2003 , 9, 175-227	1.9	16	
112	Solution-based tabu search for the maximum min-sum dispersion problem. <i>Information Sciences</i> , 2018 , 441, 79-94	7.7	15	
111	A computational study on the quadratic knapsack problem with multiple constraints. <i>Computers and Operations Research</i> , 2012 , 39, 3-11	4.6	15	
110	Exterior Path Relinking for Zero-One Optimization. <i>International Journal of Applied Metaheuristic Computing</i> , 2014 , 5, 1-8	0.8	15	
109	An ejection chain algorithm for the quadratic assignment problem. <i>Networks</i> , 2010 , 56, 188-206	1.6	15	
108	Adaptive Memory Projection Methods for Integer Programming 2005 , 425-440		15	
107	Flows in Arborescences. <i>Management Science</i> , 1971 , 17, 568-586	3.9	15	
106	Probabilistic Move Selection in Tabu Search for Zero-One Mixed Integer Programming Problems 1996 , 467-487		15	

105	Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical analysis. <i>Networks</i> , 2017 , 70, 79-97	1.6	14
104	Tabu Search and Ejection Chainsâlapplication to a Node Weighted Version of the Cardinality-Constrained TSP. <i>Management Science</i> , 1997 , 43, 908-921	3.9	14
103	A new modeling and solution approach for the number partitioning problem. <i>Journal of Applied Mathematics and Decision Sciences</i> , 2005 , 2005, 113-121		14
102	Threshold assignment algorithm. <i>Mathematical Programming Studies</i> , 1986 , 12-37		14
101	An Intersection Cut from the Dual of the Unit Hypercube. <i>Operations Research</i> , 1971 , 19, 40-44	2.3	14
100	A tabu search algorithm for cohesive clustering problems. <i>Journal of Heuristics</i> , 2015 , 21, 457-477	1.9	13
99	Ejection chain and filter-and-fan methods in combinatorial optimization. <i>Annals of Operations Research</i> , 2010 , 175, 77-105	3.2	13
98	Optimization by ghost image processes in neural networks. <i>Computers and Operations Research</i> , 1994 , 21, 801-822	4.6	13
97	Solving the maximum vertex weight clique problem via binary quadratic programming. <i>Journal of Combinatorial Optimization</i> , 2016 , 32, 531-549	0.9	12
96	A note on xQx as a modelling and solution framework for the Linear Ordering Problem. <i>International Journal of Operational Research</i> , 2009 , 5, 152	0.9	12
95	Using the unconstrained quadratic program to model and solve Max 2-SAT problems. <i>International Journal of Operational Research</i> , 2005 , 1, 89	0.9	12
94	Designing effective improvement methods for scatter search: an experimental study on global optimization. <i>Soft Computing</i> , 2013 , 17, 49-62	3.5	11
93	Foundation-penalty cuts for mixed-integer programs. <i>Operations Research Letters</i> , 2003 , 31, 245-253	1	11
92	Cut search methods in integer programming. <i>Mathematical Programming</i> , 1972 , 3-3, 86-100	2.1	11
91	Backtracking based iterated tabu search for equitable coloring. <i>Engineering Applications of Artificial Intelligence</i> , 2015 , 46, 269-278	7.2	10
90	Scatter Search and Path Relinking. International Journal of Swarm Intelligence Research, 2011, 2, 1-21	1.1	10
89	A filter-and-fan approach to the 2D HP model of the protein folding problem. <i>Annals of Operations Research</i> , 2011 , 188, 389-414	3.2	10
88	Unidimensional Search for Solving Continuous High-Dimensional Optimization Problems 2009,		10

87	Fast two-flip move evaluations for binary unconstrained quadratic optimisation problems. <i>International Journal of Metaheuristics</i> , 2010 , 1, 100	0.8	10
86	Infeasible/feasible search trajectories and directional rounding in integer programming. <i>Journal of Heuristics</i> , 2007 , 13, 505-541	1.9	10
85	A Two-Individual Based Evolutionary Algorithm for the Flexible Job Shop Scheduling Problem. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2019 , 33, 2262-2271	5	9
84	Exact solutions to generalized vertex covering problems: a comparison of two models. <i>Optimization Letters</i> , 2015 , 9, 1331-1339	1.1	9
83	Alternating control tree search for knapsack/covering problems. <i>Journal of Heuristics</i> , 2010 , 16, 239-256	81.9	9
82	Tabu searchâ�ncharted domains. <i>Annals of Operations Research</i> , 2007 , 149, 89-98	3.2	9
81	An effective modeling and solution approach for the generalized independent set problem. <i>Optimization Letters</i> , 2006 , 1, 111-117	1.1	9
80	A Netform System for Resource Planning in the U.S. Bureau of Land Management. <i>Journal of the Operational Research Society</i> , 1984 , 35, 605-616	2	9
79	A simple multi-wave algorithm for the uncapacitated facility location problem. <i>Frontiers of Engineering Management</i> , 2018 , 5, 451	2.7	9
78	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization Part I. <i>International Journal of Applied Metaheuristic Computing</i> , 2010 , 1, 1-15	0.8	9
77	Clustering-driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem. <i>Journal of Heuristics</i> , 2019 , 25, 629-642	1.9	9
76	A learning-based memetic algorithm for the multiple vehicle pickup and delivery problem with LIFO loading. <i>Computers and Industrial Engineering</i> , 2020 , 142, 106241	6.4	8
75	Adaptive tabu search with strategic oscillation for the bipartite boolean quadratic programming problem with partitioned variables. <i>Information Sciences</i> , 2018 , 450, 284-300	7.7	8
74	Surrogate constraint analysisâliew heuristics and learning schemes for satisfiability problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1997, 537-572		8
73	A learning-based path relinking algorithm for the bandwidth coloring problem. <i>Engineering Applications of Artificial Intelligence</i> , 2016 , 52, 81-91	7.2	8
72	Polynomial unconstrained binary optimisation [part 2. <i>International Journal of Metaheuristics</i> , 2011 , 1, 317	0.8	7
71	A network-related nuclear power plant model with an intelligent branch-and-bound solution approach. <i>Annals of Operations Research</i> , 1989 , 21, 317-331	3.2	7
70	A Stochastic Generalized Network Model and Large-Scale Mean-Variance Algorithm for Portfolio Selection. <i>Journal of Information and Optimization Sciences</i> , 1988 , 9, 299-316	1.1	7

69	Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems. <i>European Journal of Operational Research</i> , 2018 , 265, 829-842	5.6	7
68	Second-order cover inequalities. <i>Mathematical Programming</i> , 2008 , 114, 207-234	2.1	6
67	Some Classes of Valid Inequalities and Convex Hull Characterizations for Dynamic Fixed-Charge Problems under Nested Constraints. <i>Annals of Operations Research</i> , 2005 , 140, 215-233	3.2	6
66	AN EFFECTIVE APPROACH FOR SOLVING THE BINARY ASSIGNMENT PROBLEM WITH SIDE CONSTRAINTS. International Journal of Information Technology and Decision Making, 2002 , 01, 121-129	2.8	6
65	A primal simplex variant for the maximum-flow problem. <i>Naval Research Logistics Quarterly</i> , 1984 , 31, 41-61		6
64	Recent Developments in Computer Implementation Technology for Network Flow Algorithms. <i>Infor</i> , 1982 , 20, 433-452	0.5	6
63	Intensification-driven tabu search for the minimum differential dispersion problem. <i>Knowledge-Based Systems</i> , 2019 , 167, 68-86	7.3	6
62	A study of two evolutionary/tabu search approaches for the generalized max-mean dispersion problem. <i>Expert Systems With Applications</i> , 2020 , 139, 112856	7.8	6
61	Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking. <i>INFORMS Journal on Computing</i> , 2020 , 32, 74-89	2.4	6
60	A Unified Framework for Modeling and Solving Combinatorial Optimization Problems: A Tutorial 2006 , 101-124		6
59	Adaptive pattern search for large-scale optimization. <i>Applied Intelligence</i> , 2017 , 47, 319-330	4.9	5
58	Multi-wave algorithms for metaheuristic optimization. <i>Journal of Heuristics</i> , 2016 , 22, 331-358	1.9	5
57	Diversification-based learning in computing and optimization. <i>Journal of Heuristics</i> , 2019 , 25, 521-537	1.9	5
56	New results for aggregating integer-valued equations. <i>Annals of Operations Research</i> , 1995 , 58, 227-242	2 3.2	5
55	A Study of Memetic Search with Multi-parent Combination for UBQP. <i>Lecture Notes in Computer Science</i> , 2010 , 154-165	0.9	5
54	Effective Variable Fixing and Scoring Strategies for Binary Quadratic Programming. <i>Lecture Notes in Computer Science</i> , 2011 , 72-83	0.9	5
53	Bi-objective optimization of biclustering with binary data. <i>Information Sciences</i> , 2020 , 538, 444-466	7.7	5
52	New assignment-based neighborhoods for traveling salesman and routing problems. <i>Networks</i> , 2018 , 71, 170-187	1.6	4

51	A Complementary Cyber Swarm Algorithm. <i>International Journal of Swarm Intelligence Research</i> , 2011 , 2, 22-41	1.1	4	
50	A NEW LEARNING APPROACH TO PROCESS IMPROVEMENT IN A TELECOMMUNICATIONS COMPANY. <i>Production and Operations Management</i> , 2009 , 4, 217-227	3.6	4	
49	Higher-order cover cuts from zeroâbne knapsack constraints augmented by two-sided bounding inequalities. <i>Discrete Optimization</i> , 2008 , 5, 270-289	1	4	
48	Resolution Search and Dynamic Branch-and-Bound. <i>Journal of Combinatorial Optimization</i> , 2002 , 6, 401	-42.3	4	
47	Solving Quadratic Knapsack Problems by Reformulation and Tabu Search: Single Constraint Case. <i>Network Optimization Problems: Algorithms, Applications and Complexity,</i> 2002 , 111-121		4	
46	Surrogate Constraints in Integer Programming. <i>Journal of Information and Optimization Sciences</i> , 1991 , 12, 219-228	1.1	4	
45	Inequalities and Target Objectives for Metaheuristic Search âlPart I: Mixed Binary Optimization 2007 , 439-474		4	
44	A Path Relinking Approach for the Multi-Resource Generalized Quadratic Assignment Problem 2007 , 121-135		4	
43	Doubly-rooted stem-and-cycle ejection chain algorithm for the asymmetric traveling salesman problem. <i>Networks</i> , 2016 , 68, 23-33	1.6	4	
42	Binary Unconstrained Quadratic Optimization Problem 2013 , 533-557		4	
41	Intensification, Diversification and Learning in metaheuristic optimization. <i>Journal of Heuristics</i> , 2019 , 25, 517-520	1.9	3	
40	Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange. <i>4or</i> , 2020 , 18, 387-417	1.4	3	
39	f-Flip strategies for unconstrained binary quadratic programming. <i>Annals of Operations Research</i> , 2016 , 238, 651-657	3.2	3	
38	Pseudo-centroid clustering. <i>Soft Computing</i> , 2017 , 21, 6571-6592	3.5	3	
37	Polynomial unconstrained binary optimisation – Part 1. <i>International Journal of Metaheuristics</i> , 2011 , 1, 232	0.8	3	
36	Integrated exact, hybrid and metaheuristic learning methods for confidentiality protection. <i>Annals of Operations Research</i> , 2011 , 183, 47-73	3.2	3	
35	Further Extension of the TSP Assign Neighborhood. Journal of Heuristics, 2005, 11, 501-505	1.9	3	
34	Tabu Search and Evolutionary Scatter Search for âllree-StarâlNetwork Problems, with Applications to Leased-Line Network Design 2001 , 57-77		3	

33	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization âlPart II. International Journal of Applied Metaheuristic Computing, 2010 , 1, 1-17	0.8	3
32	A Multilevel Algorithm for Large Unconstrained Binary Quadratic Optimization. <i>Lecture Notes in Computer Science</i> , 2012 , 395-408	0.9	3
31	Solving Clique Partitioning Problems: A Comparison of Models and Commercial Solvers. <i>International Journal of Information Technology and Decision Making</i> ,1-23	2.8	3
30	Integrative Population Analysis for Better Solutions to Large-Scale Mathematical Programs. <i>Applied Optimization</i> , 1998 , 212-239		3
29	Quantum bridge analytics I: a tutorial on formulating and using QUBO models. <i>Annals of Operations Research</i> ,1	3.2	3
28	A new approach to generate pattern-efficient sets of non-dominated vectors for multi-objective optimization. <i>Information Sciences</i> , 2020 , 530, 22-42	7.7	2
27	Introduction to special xQx issue. <i>Journal of Heuristics</i> , 2013 , 19, 525-528	1.9	2
26	Chvatalâ©omoryâEer cuts for general integer programs. Discrete Optimization, 2005, 2, 51-69	1	2
25	A note on specialized versus unspecialized methods for maximum-flow problems. <i>Naval Research Logistics Quarterly</i> , 1984 , 31, 63-65		2
24	A Complementary Cyber Swarm Algorithm. <i>Advances in Computational Intelligence and Robotics Book Series</i> , 2015 , 50-70	0.4	2
23	Pseudo-Cut Strategies for Global Optimization. <i>International Journal of Applied Metaheuristic Computing</i> , 2011 , 2, 1-12	0.8	2
22	A Network Augmenting Path Basis Algorithm for Transshipment Problems. <i>Lecture Notes in Economics and Mathematical Systems</i> , 1980 , 250-274	0.4	2
21	Focal distance tabu search. Science China Information Sciences, 2021, 64, 1	3.4	2
20	Tabu search tutorial. A Graph Drawing Application. <i>Top</i> , 2021 , 29, 319-350	1.3	2
19	An extreme-point tabu-search algorithm for fixed-charge network problems. <i>Networks</i> , 2021 , 77, 322-3	4<u>0</u>. 6	2
18	A Simple Criterion for a Graph to have a Perfect Matching. <i>Journal of Information and Optimization Sciences</i> , 1987 , 8, 271-273	1.1	1
17	Reducing the Size of Some IP Formulations by Substitution. <i>Journal of the Operational Research Society</i> , 1976 , 27, 261-263	2	1
16	A matheuristic for a telecommunication network design problem with traffic grooming. <i>Omega</i> , 2020 , 90, 102003	7.2	1

LIST OF PUBLICATIONS

15	Diversification methods for zero-one optimization. <i>Journal of Heuristics</i> , 2019 , 25, 643-671	1.9	O
14	New relationships for multi-neighborhood search for the minimum linear arrangement problem. <i>Journal of Discrete Algorithms</i> , 2017 , 46-47, 16-24		
13	On convergence of scatter search and star paths with directional rounding for 0âl mixed integer programs. <i>Discrete Applied Mathematics</i> , 2020 , 308, 235-235	1	
12	Metaheuristic Agent Processes (MAPS) 2005 , 1-28		
11	A modeling/solution approach for optimal deployment of a weapons arsenal. <i>Annals of Operations Research</i> , 1989 , 20, 159-177	3.2	
10	Logical testing for new approaches to mathematical programming modeling and analysis. <i>Computer Science in Economics and Management</i> , 1989 , 2, 49-64		
9	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization Part I1-16		
8	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization âlPart II17-	-33	
7	Pseudo-Cut Strategies for Global Optimization 188-198		
6	Metaheuristic Search with Inequalities and Target Objectives for Mixed Binary Optimization Part 1684-6	598	
5	Hotel Classification Using Meta-Analytics: A Case Study with Cohesive Clustering 2019 , 815-836		
4	A Complementary Cyber Swarm Algorithm 2013 , 22-41		
3	Rejoinder on: Tabu search tutorial. A Graph Drawing Application. <i>Top</i> , 2021 , 29, 363-371	1.3	
2	Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange <i>Annals of Operations Research</i> , 2022 , 1-28	3.2	
1	Applications and Computational Advances for Solving the QUBO Model 2022 , 39-56		