Florian Schulz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9307583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging. IUCrJ, 2022, 9, 204-214.	2.2	9
2	Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals. ACS Nano, 2021, 15, 5523-5533.	14.6	58
3	Size-Dependent Electron–Phonon Coupling in Monocrystalline Gold Nanoparticles. ACS Photonics, 2021, 8, 752-757.	6.6	23
4	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	14.6	60
5	Anomalous SAXS at P12 beamline EMBL Hamburg: instrumentation and applications. Journal of Synchrotron Radiation, 2021, 28, 812-823.	2.4	9
6	X-ray Fluorescence Uptake Measurement of Functionalized Gold Nanoparticles in Tumor Cell Microsamples. International Journal of Molecular Sciences, 2021, 22, 3691.	4.1	10
7	Recent Notable Approaches to Study Selfâ€Assembly of Nanoparticles with Xâ€Ray Scattering and Electron Microscopy. Particle and Particle Systems Characterization, 2021, 38, 2100087.	2.3	23
8	Aqueous-Based Silica Nanoparticles as Carriers for Catalytically Active Biomacromolecules. ACS Applied Nano Materials, 2021, 4, 9060-9067.	5.0	4
9	Nanosecond X-ray photon correlation spectroscopy using pulse time structure of a storage-ring source. IUCrJ, 2021, 8, 124-130.	2.2	15
10	3D diffractive imaging of nanoparticle ensembles using an x-ray laser. Optica, 2021, 8, 15.	9.3	48
11	Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nature Communications, 2021, 12, 7208.	12.8	31
12	Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature, 2020, 583, 780-784.	27.8	144
13	Structural order in plasmonic superlattices. Nature Communications, 2020, 11, 3821.	12.8	56
14	Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24110-24116.	7.1	31
15	Plasmonic Supercrystals with a Layered Structure Studied by a Combined TEM AXSâ€XCCA Approach. Advanced Materials Interfaces, 2020, 7, 2000919.	3.7	8
16	Anisotropic and heterogeneous dynamics in an aging colloidal gel. Soft Matter, 2020, 16, 2864-2872.	2.7	19
17	Experimental Evidence for Nonthermal Contributions to Plasmon-Enhanced Electrochemical Oxidation Reactions. ACS Catalysis, 2020, 10, 2345-2353.	11.2	35
18	Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles. Journal of Chemical Physics, 2020, 152, 064710.	3.0	9

FLORIAN SCHULZ

#	Article	IF	CITATIONS
19	Impact of substrate on tip-enhanced Raman spectroscopy: A comparison between field-distribution simulations and graphene measurements. Physical Review Research, 2020, 2, .	3.6	14
20	Supercrystal Formation of Gold Nanorods by High Pressure Stimulation. Journal of Physical Chemistry C, 2019, 123, 29994-30000.	3.1	4
21	Kinetics of pressure-induced nanocrystal superlattice formation. Physical Chemistry Chemical Physics, 2019, 21, 21349-21354.	2.8	7
22	Direct optical excitation of dark plasmons for hot electron generation. Faraday Discussions, 2019, 214, 159-173.	3.2	15
23	Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst, The, 2019, 144, 1840-1849.	3.5	57
24	Highly Responsive PEG/Gold Nanoparticle Thin-Film Humidity Sensor via Inkjet Printing Technology. Langmuir, 2019, 35, 3256-3264.	3.5	53
25	Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt. Journal of Applied Crystallography, 2019, 52, 777-782.	4.5	5
26	Structure and Stability of PEG―and Mixed PEG‣ayerâ€Coated Nanoparticles at High Particle Concentrations Studied In Situ by Smallâ€Angle Xâ€Ray Scattering. Particle and Particle Systems Characterization, 2018, 35, 1700319.	2.3	17
27	Localising functionalised gold-nanoparticles in murine spinal cords by X-ray fluorescence imaging and background-reduction through spatial filtering for human-sized objects. Scientific Reports, 2018, 8, 16561.	3.3	25
28	Dark Interlayer Plasmons in Colloidal Gold Nanoparticle Bi- and Few-Layers. ACS Photonics, 2018, 5, 3962-3969.	6.6	28
29	Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions. Journal of Physical Chemistry Letters, 2018, 9, 4720-4724.	4.6	14
30	Heterogeneous local order in self-assembled nanoparticle films revealed by X-ray cross-correlations. IUCrJ, 2018, 5, 354-360.	2.2	14
31	Excitation-Dependence of Plasmon-Induced Hot Electrons in Gold Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4925-4929.	4.6	70
32	Size-Dependent Phase Transfer Functionalization of Gold Nanoparticles To Promote Well-Ordered Self-Assembly. Langmuir, 2017, 33, 14437-14444.	3.5	31
33	Impact of the Crosslinker's Molecular Structure on the Aggregation of Gold Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2017, 231, 19-31.	2.8	6
34	Targeted nanoparticles for tumour radiotherapy enhancement—the long dawn of a golden era?. Annals of Translational Medicine, 2016, 4, 523-523.	1.7	12
35	Tuning the Interaction of Nanoparticles from Repulsive to Attractive by Pressure. Journal of Physical Chemistry C, 2016, 120, 19856-19861.	3.1	19
36	Ligand Layer Engineering To Control Stability and Interfacial Properties of Nanoparticles. Langmuir, 2016, 32, 7897-7907.	3.5	31

FLORIAN SCHULZ

#	Article	IF	CITATIONS
37	Effective PEGylation of gold nanorods. Nanoscale, 2016, 8, 7296-7308.	5.6	50
38	Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery After Spinal Cord Injury. Molecular Therapy, 2015, 23, 993-1002.	8.2	68
39	Little Adjustments Significantly Improve the Turkevich Synthesis of Gold Nanoparticles. Langmuir, 2014, 30, 10779-10784.	3.5	155
40	Effect of the Spacer Structure on the Stability of Gold Nanoparticles Functionalized with Monodentate Thiolated Poly(ethylene glycol) Ligands. Langmuir, 2013, 29, 9897-9908.	3.5	80
41	<i>In Situ</i> Functionalization and PEO Coating of Iron Oxide Nanocrystals Using Seeded Emulsion Polymerization. Langmuir, 2013, 29, 4915-4921.	3.5	26
42	Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions. Nanoscale, 2013, 5, 10605.	5.6	25
43	Fluorescence Properties of Hydrophilic Semiconductor Nanoparticles with Tridentate Polyethylene Oxide Ligands. ACS Nano, 2011, 5, 4965-4973.	14.6	33