Jason T Huse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9307564/publications.pdf

Version: 2024-02-01

57719 58549 14,556 91 44 82 citations h-index g-index papers 94 94 94 20339 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
2	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	13.5	1,695
3	IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 2012, 483, 479-483.	13.7	1,668
4	Serpins Promote Cancer Cell Survival and Vascular Co-Option in Brain Metastasis. Cell, 2014, 156, 1002-1016.	13.5	672
5	The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science, 2016, 352, aad3018.	6.0	477
6	The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes and Development, 2009, 23, 1327-1337.	2.7	465
7	Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an lyy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology, 2016, 18, 557-564.	0.6	432
8	Osteopontin-CD44 Signaling in the Glioma Perivascular Niche Enhances Cancer Stem Cell Phenotypes and Promotes Aggressive Tumor Growth. Cell Stem Cell, 2014, 14, 357-369.	5.2	411
9	Benefit From Procarbazine, Lomustine, and Vincristine in Oligodendroglial Tumors Is Associated With Mutation of <i>IDH < /i>Iournal of Clinical Oncology, 2014, 32, 783-790.</i>	0.8	356
10	Stereotactic Radiosurgery for Melanoma BrainÂMetastases in Patients Receiving Ipilimumab: Safety Profile and Efficacy of Combined Treatment. International Journal of Radiation Oncology Biology Physics, 2015, 92, 368-375.	0.4	334
11	Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro-Oncology, 2017, 19, 1047-1057.	0.6	325
12	Most Human Non-GCIMP Glioblastoma Subtypes Evolve from a Common Proneural-like Precursor Glioma. Cancer Cell, 2014, 26, 288-300.	7.7	322
13	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	13.7	320
14	Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma. Cancer Discovery, 2017, 7, 1018-1029.	7.7	302
15	Whole exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget, 2012, 3, 1194-1203.	0.8	241
16	Molecular Profiling Reveals Unique Immune and Metabolic Features of Melanoma Brain Metastases. Cancer Discovery, 2019, 9, 628-645.	7.7	231
17	Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget, 2013, 4, 1729-1736.	0.8	213
18	YTHDF3 Induces the Translation of m6A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell, 2020, 38, 857-871.e7.	7.7	203

#	Article	IF	CITATIONS
19	Molecular subclassification of diffuse gliomas: Seeing order in the chaos. Glia, 2011, 59, 1190-1199.	2.5	201
20	Evaluation of <scp>H</scp> istone 3 Lysine 27 Trimethylation (<scp>H3K27me3</scp>) and Enhancer of Zest 2 (<scp>EZH</scp> 2) in Pediatric Glial and Glioneuronal Tumors Shows Decreased <scp>H3K27me3</scp> in <scp><i>H3F3A</i> K27M</scp> Mutant Glioblastomas. Brain Pathology, 2013, 23, 558-564.	2.1	195
21	Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta Neuropathologica, 2017, 133, 417-429.	3.9	172
22	Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Science Translational Medicine, 2020, 12, .	5.8	170
23	Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Genetics, 2018, 50, 62-72.	9.4	137
24	G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nature Communications, 2019, 10, 943.	5.8	132
25	IDH Mutation and Neuroglial Developmental Features Define Clinically Distinct Subclasses of Lower Grade Diffuse Astrocytic Glioma. Clinical Cancer Research, 2012, 18, 2490-2501.	3.2	127
26	Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nature Communications, 2019, 10, 3170.	5.8	113
27	Multinodular and Vacuolating Neuronal Tumors of the Cerebrum: 10 Cases of a Distinctive Seizureâ€Associated Lesion. Brain Pathology, 2013, 23, 515-524.	2.1	107
28	miR-34a Repression in Proneural Malignant Gliomas Upregulates Expression of Its Target PDGFRA and Promotes Tumorigenesis. PLoS ONE, 2012, 7, e33844.	1.1	106
29	A Revised Diagnostic Classification of Canine Glioma: Towards Validation of the Canine Glioma Patient as a Naturally Occurring Preclinical Model for Human Glioma. Journal of Neuropathology and Experimental Neurology, 2018, 77, 1039-1054.	0.9	105
30	Phase II Study of Bevacizumab, Temozolomide, and Hypofractionated Stereotactic Radiotherapy for Newly Diagnosed Glioblastoma. Clinical Cancer Research, 2014, 20, 5023-5031.	3.2	89
31	Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true "oligoastrocytoma�. Acta Neuropathologica, 2015, 129, 151-153.	3.9	87
32	Glioblastoma: Molecular Analysis and Clinical Implications. Annual Review of Medicine, 2013, 64, 59-70.	5.0	81
33	Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncolmmunology, 2019, 8, e1655360.	2.1	76
34	Diagnostic Accuracy of T1-Weighted Dynamic Contrast-Enhanced–MRI and DWI-ADC for Differentiation of Glioblastoma and Primary CNS Lymphoma. American Journal of Neuroradiology, 2017, 38, 485-491.	1.2	71
35	Transcriptional diversity of long-term glioblastoma survivors. Neuro-Oncology, 2014, 16, 1186-1195.	0.6	69
36	Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Science Advances, 2020, 6, eaaz3221.	4.7	67

#	Article	lF	CITATIONS
37	A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatric Blood and Cancer, 2017, 64, e26409.	0.8	66
38	Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling. Nature Communications, 2018, 9, 1057.	5.8	66
39	Blocking immunosuppressive neutrophils deters pY696-EZH2–driven brain metastases. Science Translational Medicine, 2020, 12, .	5.8	64
40	Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant Brain Tumor Model. Clinical Cancer Research, 2020, 26, 147-158.	3.2	59
41	The Evolving Role of Molecular Markers in the Diagnosis and Management of Diffuse Glioma. Clinical Cancer Research, 2014, 20, 5601-5611.	3.2	53
42	Classification of adultâ€ŧype diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathology, 2022, 32, e13062.	2.1	53
43	Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nature Communications, 2018, 9, 1466.	5.8	52
44	OncoTree: A Cancer Classification System for Precision Oncology. JCO Clinical Cancer Informatics, 2021, 5, 221-230.	1.0	51
45	Integrated Genomics for Pinpointing Survival Loci within Arm-Level Somatic Copy Number Alterations. Cancer Cell, 2016, 29, 737-750.	7.7	50
46	The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro-Oncology, 2019, 21, 1498-1508.	0.6	49
47	A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS ONE, 2017, 12, e0178593.	1.1	38
48	Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity. Genome Biology, 2020, 21, 271.	3.8	36
49	The Evolving Classification of Diffuse Gliomas: World Health Organization Updates for 2021. Current Neurology and Neuroscience Reports, 2021, 21, 67.	2.0	35
50	ATRX loss in glioma results in dysregulation of cell-cycle phase transition and ATM inhibitor radio-sensitization. Cell Reports, 2022, 38, 110216.	2.9	32
51	EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. Journal of Neuro-Oncology, 2019, 142, 337-345.	1.4	30
52	Toward a standard pathological and molecular characterization of recurrent glioma in adults: a Response Assessment in Neuro-Oncology effort. Neuro-Oncology, 2020, 22, 450-456.	0.6	30
53	Multi-omic molecular profiling reveals potentially targetable abnormalities shared across multiple histologies of brain metastasis. Acta Neuropathologica, 2021, 141, 303-321.	3.9	30
54	Molecular classification of adult diffuse gliomas: conflicting IDH1/IDH2, ATRX, and 1p/19q results. Human Pathology, 2017, 69, 15-22.	1.1	29

#	Article	IF	CITATIONS
55	EGFR and PDGFRA co-expression and heterodimerization in glioblastoma tumor sphere lines. Scientific Reports, 2017, 7, 9043.	1.6	27
56	IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Scientific Reports, 2016, 6, 27569.	1.6	26
57	Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas. Archives of Pathology and Laboratory Medicine, 2022, 146, 547-574.	1.2	25
58	Malignant Astrocytic Tumor Progression Potentiated by JAK-mediated Recruitment of Myeloid Cells. Clinical Cancer Research, 2017, 23, 3109-3119.	3.2	23
59	Glioma risk associated with extent of estimated European genetic ancestry in African Americans and Hispanics. International Journal of Cancer, 2020, 146, 739-748.	2.3	23
60	Molecular markers and targeted therapy in pediatric low-grade glioma. Journal of Neuro-Oncology, 2020, 150, 5-15.	1.4	23
61	Homozygous MTAP deletion in primary human glioblastoma is not associated with elevation of methylthioadenosine. Nature Communications, 2021, 12, 4228.	5.8	21
62	AKT1 E17K in Colorectal Carcinoma Is Associated with BRAF V600E but Not MSI-H Status: A Clinicopathologic Comparison to PIK3CA Helical and Kinase Domain Mutants. Molecular Cancer Research, 2015, 13, 1003-1008.	1.5	20
63	<i>ARID1B</i> alterations identify aggressive tumors in neuroblastoma. Oncotarget, 2017, 8, 45943-45950.	0.8	19
64	Multiplatform profiling of meningioma provides molecular insight and prioritization of drug targets for rational clinical trial design. Journal of Neuro-Oncology, 2018, 139, 469-478.	1.4	18
65	The Emerging Molecular Foundations of Pediatric Brain Tumors. Journal of Child Neurology, 2015, 30, 1838-1850.	0.7	17
66	18F-Fluorocholine PET uptake correlates with pathologic evidence of recurrent tumor after stereotactic radiosurgery for brain metastases. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1446-1457.	3.3	13
67	<i>FGFR1</i> tyrosine kinase domain duplication in pilocytic astrocytoma with anaplasia. Journal of Physical Education and Sports Management, 2018, 4, a002378.	0.5	12
68	Elucidating the molecular pathogenesis of glioma: integrated germline and somatic profiling of a familial glioma case series. Neuro-Oncology, 2018, 20, 1625-1633.	0.6	12
69	Coexisting FGFR3 p.K650T mutation in two FGFR3-TACC3 fusion glioma cases. Acta Neuropathologica Communications, 2019, 7, 63.	2.4	11
70	TERT promoter mutation designates biologically aggressive primary glioblastoma. Neuro-Oncology, 2015, 17, 5-6.	0.6	10
71	Megalencephalic leukoencephalopathy with subcortical cysts 1 (MLC1) promotes glioblastoma cell invasion in the brain microenvironment. Oncogene, 2020, 39, 7253-7264.	2.6	10
72	The molecular landscape of diffuse glioma and prospects for biomarker development. Expert Opinion on Medical Diagnostics, 2013, 7, 573-587.	1.6	9

#	Article	IF	CITATIONS
7 3	A Cell Engineering Strategy to Enhance the Safety of Stem Cell Therapies. Cell Reports, 2014, 8, 1677-1685.	2.9	9
74	Effect of health disparities on overall survival of patients with glioblastoma. Journal of Neuro-Oncology, 2019, 142, 365-374.	1.4	9
75	Differences in patterns of care and outcomes between grade II and grade III molecularly defined 1p19q co-deleted gliomas. Clinical and Translational Radiation Oncology, 2019, 15, 46-52.	0.9	9
76	Spatial Distance Correlates With Genetic Distance in Diffuse Glioma. Frontiers in Oncology, 2019, 9, 676.	1.3	8
77	Clinical characterization of adult medulloblastoma and the effect of first-line therapies on outcome; The MD Anderson Cancer Center experience. Neuro-Oncology Advances, 2021, 3, vdab079.	0.4	6
78	CD11c+CD163+ Cells and Signal Transducer and Activator of Transcription 3 (STAT3) Expression Are Common in Melanoma Leptomeningeal Disease. Frontiers in Immunology, 2021, 12, 745893.	2.2	6
79	CMV and glioma-are we there yet?. Neuro-Oncology, 2014, 16, 1433-1434.	0.6	5
80	The epigenetic dysfunction underlying malignant glioma pathogenesis. Laboratory Investigation, 2022, 102, 682-690.	1.7	4
81	Robust detection of oncometabolic aberrations by 1H–13C heteronuclear single quantum correlation in intact biological specimens. Communications Biology, 2020, 3, 328.	2.0	3
82	Novel insights into the epigenetics of diffuse glioma. Molecular and Cellular Oncology, 2018, 5, e1472055.	0.3	1
83	HGG-08. ATRX LOSS IN PEDIATRIC GBM RESULTS IN EPIGENETIC DYSREGULATION OF G2/M CHECKPOINT MAINTENANCE AND SENSITIVITY TO ATM INHIBITION. Neuro-Oncology, 2019, 21, ii88-ii88.	0.6	O
84	RARE-23. DIFFUSE LEPTOMENINGEAL GLIONEURONAL TUMOR: A CASE SERIES. Neuro-Oncology, 2021, 23, i45-i45.	0.6	0
85	An international perspective on the management of glioblastoma. Chinese Clinical Oncology, 2021, 10, 40-40.	0.4	0
86	EXTH-06. INTEGRATED MOLECULAR PROFILING REVEALS TARGETABLE MOLECULAR ABNORMALITIES SHARED ACROSS MULTIPLE HISTOLOGIES OF BRAIN METASTASIS. Neuro-Oncology, 2020, 22, ii87-ii88.	0.6	0
87	CBIO-18. G-QUADRUPLEX STABILIZATION TARGETS ATRX-DEFICIENT HIGH-GRADE GLIOMA VIA INDUCTION OF p53-INDEPENDENT APOPTOSIS. Neuro-Oncology, 2020, 22, ii19-ii19.	0.6	0
88	IMMU-18. INTERPLAY BETWEEN IDH1 AND ATRX MUTATIONS GOVERN INNATE IMMUNE RESPONSES IN GLIOMAS. Neuro-Oncology, 2020, 22, ii108-ii108.	0.6	0
89	TAMI-62. ANGIOGENESIS INHIBITORS STRONGLY SYNERGIZE WITH THERAPEUTICS TARGETING TUMOR METABOLISM. Neuro-Oncology, 2020, 22, ii227-ii227.	0.6	0
90	CBIO-03. ATRX LOSS IN GLIOMA RESULTS IN EPIGENETIC DYSREGULATION OF CELL CYCLE PHASE TRANSITION. Neuro-Oncology, 2020, 22, ii16-ii16.	0.6	0

#	Article	IF	CITATIONS
91	CSIG-09. ATRX DEFICIENCY IN GLIOMA IMPACTS TRANSCRIPTIONAL PROFILES AND THE IMMUNE MICROENVIRONMENT IN VIVO. Neuro-Oncology, 2020, 22, ii29-ii29.	0.6	o