
zhongshan Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/930756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Transcriptome Analysis Reveals Sex-Biased Expression of Hormone-Related Genes at an Early Stage of Sex Differentiation in Red Bayberry (Morella rubra). Horticulturae, 2022, 8, 183.	2.8	3
2	Effects of Exogenous Application of GA4+7 and NAA on Sugar Accumulation and Related Gene Expression in Peach Fruits During Developing and Ripening Stages. Journal of Plant Growth Regulation, 2021, 40, 962-973.	5.1	8
3	China Consensus Document on Allergy Diagnostics. Allergy, Asthma and Immunology Research, 2021, 13, 177.	2.9	17
4	Peach allergen Pru p 1 content is generally low in fruit but with large variation in different varieties. Clinical and Translational Allergy, 2021, 11, e12034.	3.2	3
5	Genome-Wide Analysis of MYB Gene Family in Chinese Bayberry (Morella rubra) and Identification of Members Regulating Flavonoid Biosynthesis. Frontiers in Plant Science, 2021, 12, 691384.	3.6	40
6	MrTPS3 and MrTPS20 Are Responsible for β-Caryophyllene and α-Pinene Production, Respectively, in Red Bayberry (Morella rubra). Frontiers in Plant Science, 2021, 12, 798086.	3.6	5
7	Single Nucleotide Polymorphism Detection for Peach Gummosis Disease Resistance by Genome-Wide Association Study. Frontiers in Plant Science, 2021, 12, 763618.	3.6	4
8	Selection of Pru p 3 hypoallergenic peach and nectarine varieties. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1256-1260.	5.7	4
9	Variation in IgE binding potencies of seven Artemisia species depending on content of major allergens. Clinical and Translational Allergy, 2020, 10, 50.	3.2	10
10	Toward personalization of asthma treatment according to trigger factors. Journal of Allergy and Clinical Immunology, 2020, 145, 1529-1534.	2.9	30
11	Construction of an anchoring SSR marker genetic linkage map and detection of a sex-linked region in two dioecious populations of red bayberry. Horticulture Research, 2020, 7, 53.	6.3	23
12	The red bayberry genome and genetic basis of sex determination. Plant Biotechnology Journal, 2019, 17, 397-409.	8.3	61
13	Genome-wide identification and analysis of the MADS-box gene family and its potential role in fruit development and ripening in red bayberry (Morella rubra). Gene, 2019, 717, 144045.	2.2	13
14	Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Horticulture Research, 2019, 6, 58.	6.3	121
15	Localization of Four Allergens in Artemisia Pollen by Immunofluorescent Antibodies. International Archives of Allergy and Immunology, 2019, 179, 165-172.	2.1	5
16	<i>Artemisia</i> pollen allergy in China: Componentâ€resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 284-293.	5.7	54
17	PeachVar-DB: A Curated Collection of Genetic Variations for the Interactive Analysis of Peach Genome Data. Plant and Cell Physiology, 2018, 59, e2-e2.	3.1	12
18	Identification of a 62â€kDa major allergen from <i>Artemisia</i> pollen as a putative galactose oxidase. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1041-1052.	5.7	15

zhongshan Gao

#	Article	IF	CITATIONS
19	Acyl-CoA oxidase 1 is involved in γ-decalactone release from peach (Prunus persica) fruit. Plant Cell Reports, 2017, 36, 829-842.	5.6	27
20	Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid â€~Sorbonne' and putative control network for scent genes. BMC Genomics, 2017, 18, 899.	2.8	18
21	IgEâ€binding potencies of three peach Pru p 1 isoforms. Molecular Nutrition and Food Research, 2016, 60, 2457-2466.	3.3	12
22	Quantification of Peach Fruit Allergen Lipid Transfer Protein by a Double Monoclonal Antibody-based Sandwich ELISA. Food Analytical Methods, 2016, 9, 823-830.	2.6	15
23	Whole-Genome Analysis of Diversity and SNP-Major Gene Association in Peach Germplasm. PLoS ONE, 2015, 10, e0136803.	2.5	98
24	Genetic diversity of male and female Chinese bayberry (Myrica rubra) populations and identification of sex-associated markers. BMC Genomics, 2015, 16, 394.	2.8	31
25	Identification of volatile and softening-related genes using digital gene expression profiles in melting peach. Tree Genetics and Genomes, 2015, 11, 1.	1.6	31
26	Selection of generally applicable SSR markers for evaluation of genetic diversity and identity in Lilium. Biochemical Systematics and Ecology, 2015, 61, 278-285.	1.3	13
27	Evaluation of the Role of IgE Responses to Der p 1 and Der p 2 in Chinese House Dust Mite-Allergic Patients. International Archives of Allergy and Immunology, 2015, 167, 203-210.	2.1	21
28	De Novo Assembled Transcriptome Analysis and SSR Marker Development of a Mixture of Six Tissues from Lilium Oriental Hybrid †Sorbonne'. Plant Molecular Biology Reporter, 2015, 33, 281-293.	1.8	54
29	Development of 107 SSR markers from whole genome shotgun sequences of Chinese bayberry (Myrica) Tj ETQq1 15, 997-1005.	1 0.78431 2.8	14 rgBT /Ove 17
30	Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits. Journal of Proteomics, 2014, 105, 19-30.	2.4	80
31	Peach genetic resources: diversity, population structure and linkage disequilibrium. BMC Genetics, 2013, 14, 84.	2.7	78
32	The PpLTP1 Primary Allergen Gene is Highly Conserved in Peach and Has Small Variations in Other Prunus Species. Plant Molecular Biology Reporter, 2013, 32, 652.	1.8	0
33	Peach allergy in China: AÂdominant role for mugwort pollen lipid transfer protein as a primary sensitizer. Journal of Allergy and Clinical Immunology, 2013, 131, 224-226.e3.	2.9	85
34	In vitro selection of glyphosate-tolerant variants from long-term callus cultures of Zoysia matrella [L.] Merr. Plant Cell, Tissue and Organ Culture, 2012, 111, 199-207.	2.3	9
35	Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genomics, 2012, 13, 201.	2.8	133
36	Anaphylaxis and generalized urticaria from eating Chinese bayberry fruit. Journal of Zhejiang University: Science B, 2012, 13, 851-854.	2.8	6

zhongshan Gao

#	Article	IF	CITATIONS
37	Overview of Allergen Sources in China. Advanced Topics in Science and Technology in China, 2012, , 59-79.	0.1	2
38	Diversity arrays technology (DArT) markers in apple for genetic linkage maps. Molecular Breeding, 2012, 29, 645-660.	2.1	41
39	Multidisciplinary Approaches to Allergy Prevention. Advanced Topics in Science and Technology in China, 2012, , 33-55.	0.1	1
40	Allergen Protein Families and Cross-Reactivity. Advanced Topics in Science and Technology in China, 2012, , 81-90.	0.1	1
41	Recombinant Allergens and Applications. Advanced Topics in Science and Technology in China, 2012, , 131-146.	0.1	0
42	Fruit Allergy and Genetic and Genomic Tools to Select Hypoallergenic Fruit Cultivars. Advanced Topics in Science and Technology in China, 2012, , 359-383.	0.1	0
43	Genetic Diversity and Identity of Chinese Loquat Cultivars/Accessions (Eriobotrya japonica) Using Apple SSR Markers. Plant Molecular Biology Reporter, 2011, 29, 197-208.	1.8	52
44	Cultivar Identification and Genetic Diversity of Chinese Bayberry (Myrica rubra) Accessions Based on Fluorescent SSR Markers. Plant Molecular Biology Reporter, 2011, 29, 554-562.	1.8	24
45	Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Molecular Breeding, 2011, 28, 667-682.	2.1	53
46	Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella [L.] Merr. Plant Cell, Tissue and Organ Culture, 2011, 104, 187-192.	2.3	29
47	In vitro selection of salt tolerant variants following 60Co gamma irradiation of long-term callus cultures of Zoysia matrella [L.] Merr Plant Cell, Tissue and Organ Culture, 2011, 107, 493-500.	2.3	26
48	Differential transcript abundance and genotypic variation of four putative allergen-encoding gene families in melting peach. Tree Genetics and Genomes, 2011, 7, 903-916.	1.6	20
49	Evaluation of the genetic diversity of Asian peach accessions using a selected set of SSR markers. Scientia Horticulturae, 2010, 125, 622-629.	3.6	40
50	Development of SNP markers and haplotype analysis of the candidate gene for rhg1, which confers resistance to soybean cyst nematode in soybean. Molecular Breeding, 2009, 24, 63-76.	2.1	28
51	Development and characterization of microsatellite markers for Chinese bayberry (Myrica rubra Sieb.) Tj ETQq1 1	0,784314 1.5	rgBT /Over
52	Genetic Diversity of Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Accessions Revealed by Amplified Fragment Length Polymorphism. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 487-491.	1.0	26
53	Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity. BMC Plant Biology, 2008, 8, 116.	3.6	45
54	Genomic characterization of putative allergen genes in peach/almond and their synteny with apple. BMC Genomics, 2008, 9, 543.	2.8	61

#	Article	IF	CITATIONS
55	An Anthocyanin-Related Glutathione S-Transferase, MrGST1, Plays an Essential Role in Fruit Coloration in Chinese Bayberry (Morella rubra). Frontiers in Plant Science, 0, 13, .	3.6	7