Adriaan J M Mackus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/930753/publications.pdf Version: 2024-02-01

ADDIAAN I M MACKUS

#	Article	IF	CITATIONS
1	The use of atomic layer deposition in advanced nanopatterning. Nanoscale, 2014, 6, 10941-10960.	2.8	304
2	From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chemistry of Materials, 2019, 31, 2-12.	3.2	248
3	Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review. Chemistry of Materials, 2019, 31, 1142-1183.	3.2	179
4	Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 2973-2977.	3.2	142
5	Area-Selective Atomic Layer Deposition of SiO ₂ Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle. ACS Nano, 2017, 11, 9303-9311.	7.3	136
6	Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis. Chemistry of Materials, 2013, 25, 1905-1911.	3.2	123
7	Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy. Applied Physics Letters, 2009, 95, .	1.5	111
8	Remote Plasma ALD of Platinum and Platinum Oxide Films. Electrochemical and Solid-State Letters, 2009, 12, G34.	2.2	107
9	Catalytic Combustion and Dehydrogenation Reactions during Atomic Layer Deposition of Platinum. Chemistry of Materials, 2012, 24, 1752-1761.	3.2	107
10	Tandem Core–Shell Si–Ta ₃ N ₅ Photoanodes for Photoelectrochemical Water Splitting. Nano Letters, 2016, 16, 7565-7572.	4.5	99
11	Nucleation and growth of Pt atomic layer deposition on Al2O3 substrates using (methylcyclopentadienyl)-trimethyl platinum and O2 plasma. Journal of Applied Physics, 2011, 109, .	1.1	96
12	Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation. Chemistry of Materials, 2018, 30, 663-670.	3.2	90
13	Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation. Nanotechnology, 2016, 27, 034001.	1.3	86
14	A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantation. ACS Nano, 2016, 10, 4451-4458.	7.3	78
15	Synthesis andin situcharacterization of low-resistivity TaNx films by remote plasma atomic layer deposition. Journal of Applied Physics, 2007, 102, 083517.	1.1	75
16	Area-Selective Deposition of Ruthenium by Combining Atomic Layer Deposition and Selective Etching. Chemistry of Materials, 2019, 31, 3878-3882.	3.2	71
17	Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition. Journal of Applied Physics, 2010, 107, 116102.	1.1	70
18	Room-Temperature Atomic Layer Deposition of Platinum. Chemistry of Materials, 2013, 25, 1769-1774.	3.2	70

Adriaan J M Mackus

#	Article	IF	CITATIONS
19	Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide. Journal of Chemical Physics, 2017, 146, 052802.	1.2	64
20	Nanopatterning by direct-write atomic layer deposition. Nanoscale, 2012, 4, 4477.	2.8	62
21	Atomic Layer Deposition of High-Purity Palladium Films from Pd(hfac) ₂ and H ₂ and O ₂ Plasmas. Journal of Physical Chemistry C, 2014, 118, 8702-8711.	1.5	62
22	Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition. Chemistry of Materials, 2019, 31, 1250-1257.	3.2	62
23	Optical emission spectroscopy as a tool for studying, optimizing, and monitoring plasma-assisted atomic layer deposition processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 77-87.	0.9	59
24	Area-Selective Atomic Layer Deposition of In ₂ O ₃ :H Using a μ-Plasma Printer for Local Area Activation. Chemistry of Materials, 2017, 29, 921-925.	3.2	59
25	Direct-Write Atomic Layer Deposition of High-Quality Pt Nanostructures: Selective Growth Conditions and Seed Layer Requirements. Journal of Physical Chemistry C, 2013, 117, 10788-10798.	1.5	58
26	Area-Selective Atomic Layer Deposition of Two-Dimensional WS ₂ Nanolayers. , 2020, 2, 511-518.		45
27	Area-Selective Atomic Layer Deposition of TiN Using Aromatic Inhibitor Molecules for Metal/Dielectric Selectivity. Chemistry of Materials, 2020, 32, 7788-7795.	3.2	42
28	Mechanism of Precursor Blocking by Acetylacetone Inhibitor Molecules during Area-Selective Atomic Layer Deposition of SiO ₂ . Chemistry of Materials, 2020, 32, 3335-3345.	3.2	39
29	Atomic Layer Deposition of Cobalt Using H ₂ -, N ₂ -, and NH ₃ -Based Plasmas: On the Role of the Co-reactant. Journal of Physical Chemistry C, 2018, 122, 22519-22529.	1.5	31
30	Nanoscale Encapsulation of Perovskite Nanocrystal Luminescent Films via Plasma-Enhanced SiO ₂ Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 53519-53527.	4.0	31
31	Isotropic Atomic Layer Etching of ZnO Using Acetylacetone and O ₂ Plasma. ACS Applied Materials & Interfaces, 2018, 10, 38588-38595.	4.0	30
32	The Role of Aluminum in Promoting Ni–Fe–OOH Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3488-3499.	2.5	30
33	Dehydrogenation Reactions during Atomic Layer Deposition of Ru Using O ₂ . Chemistry of Materials, 2012, 24, 3696-3700.	3.2	29
34	Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS ₂ by Atomic Layer Deposition. ACS Nano, 2020, 14, 1757-1769.	7.3	29
35	Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dyeâ€6ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300831.	10.2	28
36	Mass Spectrometry Study of the Temperature Dependence of Pt Film Growth by Atomic Layer Deposition. ECS Journal of Solid State Science and Technology, 2012, 1, P255-P262.	0.9	27

Adriaan J M Mackus

#	Article	IF	CITATIONS
37	<i>In situ</i> spectroscopic ellipsometry during atomic layer deposition of Pt, Ru and Pd. Journal Physics D: Applied Physics, 2016, 49, 115504.	1.3	27
38	Precise ion energy control with tailored waveform biasing for atomic scale processing. Journal of Applied Physics, 2020, 128, .	1.1	26
39	Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	18
40	Graphene devices with bottom-up contacts by area-selective atomic layer deposition. 2D Materials, 2017, 4, 025046.	2.0	15
41	Atomic layer deposition of aluminum fluoride using Al(CH3)3 and SF6 plasma. Applied Physics Letters, 2017, 111, .	1.5	15
42	lsotropic plasma atomic layer etching of Al2O3 using a fluorine containing plasma and Al(CH3)3. Applied Physics Letters, 2020, 117, .	1.5	15
43	Insight into the removal and reapplication of small inhibitor molecules during area-selective atomic layer deposition of SiO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	15
44	Relation between Reactive Surface Sites and Precursor Choice for Area-Selective Atomic Layer Deposition Using Small Molecule Inhibitors. Journal of Physical Chemistry C, 2022, 126, 4845-4853.	1.5	15
45	(Invited) Area-Selective Atomic Layer Deposition: Role of Surface Chemistry. ECS Transactions, 2017, 80, 39-48.	0.3	13
46	Remote Plasma and Thermal ALD of Platinum and Platinum Oxide Films. ECS Transactions, 2008, 16, 209-218.	0.3	12
47	Catalytic Combustion Reactions During Atomic Layer Deposition of Ru Studied Using ¹⁸ O ₂ Isotope Labeling. Journal of Physical Chemistry C, 2013, 117, 21320-21330.	1.5	11
48	Resist-free fabricated carbon nanotube field-effect transistors with high-quality atomic-layer-deposited platinum contacts. Applied Physics Letters, 2017, 110, .	1.5	11
49	Atomic layer deposition and selective etching of ruthenium for area-selective deposition: Temperature dependence and supercycle design. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	9
50	Atomic layer deposition of ruthenium using an ABC-type process: Role of oxygen exposure during nucleation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	8
51	Identification of highly active surface iron sites on Ni(OOH) for the oxygen evolution reaction by atomic layer deposition. Journal of Catalysis, 2021, 394, 476-485.	3.1	8
52	Surface Chemistry during Atomic Layer Deposition of Pt Studied with Vibrational Sum-Frequency Generation. Journal of Physical Chemistry C, 2022, 126, 2463-2474.	1.5	7
53	(Invited) Catalytic Surface Reactions during Nucleation and Growth of Atomic Layer Deposition of Noble Metals: A Case Study for Platinum. ECS Transactions, 2013, 58, 183-193.	0.3	5
54	Reaction Mechanisms during Atomic Layer Deposition of AlF ₃ Using Al(CH ₃) ₃ and SF ₆ Plasma. Journal of Physical Chemistry C, 2021, 125, 3913-3923.	1.5	4

#	Article	IF	CITATIONS
55	Dependence of inherent selective atomic layer deposition of FeOx on Pt nanoparticles on the coreactant and temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	3
56	Approaches and opportunities for area-selective atomic layer deposition. , 2018, , .		2
57	Equivalent electric circuit model of accurate ion energy control with tailored waveform biasing. Plasma Sources Science and Technology, 0, , .	1.3	2
58	Investigating the difference in nucleation during Si-based ALD on different surfaces for future area-selective deposition. , 2018, , .		0