Stefanie Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9307147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editor's Choice – Relevance of Infarct Size, Timing of Surgery, and Peri-operative Management for Non-ischaemic Cerebral Complications After Carotid Endarterectomy. European Journal of Vascular and Endovascular Surgery, 2022, 63, 268-274.	0.8	3
2	Structural and functional brain alterations in patients with myasthenia gravis. Brain Communications, 2022, 4, fcac018.	1.5	4
3	An Automated Tongue Tracker for Quantifying Bulbar Function in ALS. Frontiers in Neurology, 2022, 13, 838191.	1.1	7
4	Pulsatility Index in the Basal Ganglia Arteries Increases with Age in Elderly with and without Cerebral Small Vessel Disease. American Journal of Neuroradiology, 2022, 43, 540-546.	1.2	6
5	Eculizumab versus rituximab in generalised myasthenia gravis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 548-554.	0.9	19
6	Relevance of Infarct Size, Timing of Surgery, and Peri-operative Management for Non-ischaemic Cerebral Complications After Carotid Endarterectomy. Journal of Vascular Surgery, 2022, 75, 1119.	0.6	0
7	Independent risk factors for myasthenic crisis and disease exacerbation in a retrospective cohort of myasthenia gravis patients. Journal of Neuroinflammation, 2022, 19, 89.	3.1	37
8	Brevican and Neurocan Cleavage Products in the Cerebrospinal Fluid - Differential Occurrence in ALS, Epilepsy and Small Vessel Disease. Frontiers in Cellular Neuroscience, 2022, 16, 838432.	1.8	8
9	P 25 CSF biomarkers in CAA compared to AD. Clinical Neurophysiology, 2022, 137, e28-e29.	0.7	Ο
10	Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magnetic Resonance Imaging: A Pilot Study. Frontiers in Aging Neuroscience, 2022, 14, .	1.7	5
11	The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI–neuropathology diagnostic accuracy study. Lancet Neurology, The, 2022, 21, 714-725.	4.9	168
12	Interplay between perivascular and perineuronal extracellular matrix remodelling in neurological and psychiatric diseases. European Journal of Neuroscience, 2021, 53, 3811-3830.	1.2	26
13	Topographical layer imaging as a tool to track neurodegenerative disease spread in M1. Nature Reviews Neuroscience, 2021, 22, 68-69.	4.9	9
14	Longitudinal clinical and neuroanatomical correlates of memory impairment in motor neuron disease. NeuroImage: Clinical, 2021, 29, 102545.	1.4	13
15	Amyotrophic lateral sclerosis patients show increased peripheral and intrathecal T-cell activation. Brain Communications, 2021, 3, fcab157.	1.5	25
16	High-Resolution Nerve Ultrasound Abnormalities in POEMS Syndrome—A Comparative Study. Diagnostics, 2021, 11, 264.	1.3	7
17	Detection of Cerebral Microbleeds With Venous Connection at 7-Tesla MRI. Neurology, 2021, 96, e2048-e2057.	1.5	19
18	Impairment of mitochondrial oxidative phosphorylation in skin fibroblasts of SALS and FALS patients is rescued by in vitro treatment with ROS scavengers. Experimental Neurology, 2021, 339, 113620.	2.0	16

#	Article	IF	CITATIONS
19	Hippocampal vascularization patterns exert local and distant effects on brain structure but not vascular pathology in old age. Brain Communications, 2021, 3, fcab127.	1.5	9
20	DimLift: Interactive Hierarchical Data Exploration Through Dimensional Bundling. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 2908-2922.	2.9	5
21	Integrated Dual Analysis of Quantitative and Qualitative High-Dimensional Data. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 2953-2966.	2.9	3
22	Characteristics of pain and the burden it causes in patients with amyotrophic lateral sclerosis – a longitudinal study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, , 1-8.	1.1	5
23	A Multi-Center Cohort Study on Characteristics of Pain, Its Impact and Pharmacotherapeutic Management in Patients with ALS. Journal of Clinical Medicine, 2021, 10, 4552.	1.0	4
24	From many, one: A call for meta ohorts in neuromuscular ultrasound. European Journal of Neurology, 2021, 28, 1435-1436.	1.7	0
25	Author Response: Detection of Cerebral Microbleeds With Venous Connection at 7-Tesla MRI. Neurology, 2021, 97, 840-840.	1.5	0
26	Invited Review: The spectrum of ageâ€related small vessel diseases: potential overlap and interactions of amyloid and nonamyloid vasculopathies. Neuropathology and Applied Neurobiology, 2020, 46, 219-239.	1.8	29
27	7T MR neurographyâ€ultrasound fusion for peripheral nerve imaging. Muscle and Nerve, 2020, 61, 521-526.	1.0	6
28	Contrast-enhancement in the wall of a cerebral fusiform aneurysm in neuroborreliosis at 7ÂT MRI. Journal of the Neurological Sciences, 2020, 418, 117112.	0.3	0
29	MRI phenotyping of underlying cerebral small vessel disease in mixed hemorrhage patients. Journal of the Neurological Sciences, 2020, 419, 117173.	0.3	5
30	Textural markers of ultrasonographic nerve alterations in amyotro phic lateral sclerosis. Muscle and Nerve, 2020, 62, 601-610.	1.0	5
31	Peripheral Nerve Imaging Aids in the Diagnosis of Immune-Mediated Neuropathies—A Case Series. Diagnostics, 2020, 10, 535.	1.3	6
32	Modification of In-Hospital Recommendation and Prescription of Anticoagulants for Secondary Prevention of Stroke after Launch of Direct Oral Anticoagulants and Change of National Guidelines. Cerebrovascular Diseases, 2020, 49, 412-418.	0.8	2
33	Impaired occipital cerebrovascular reactivity as a biomarker for vascular β-amyloid. Neurology, 2020, 95, 415-416.	1.5	1
34	Hippocampal vascularization pattern exerts local and global effects on structural and functional brain integrity. Alzheimer's and Dementia, 2020, 16, e039775.	0.4	0
35	<scp>AANEM</scp> ― <scp>IFCN</scp> Glossary of Terms in Neuromuscular Electrodiagnostic Medicine and Ultrasound. Muscle and Nerve, 2020, 62, 10-12.	1.0	7
36	Retinal Vascular Pathology in a Rat Model of Cerebral Small Vessel Disease. Frontiers in Neurology, 2020, 11, 533.	1.1	3

#	Article	IF	CITATIONS
37	Reply: Heterogeneity of the circle of Willis and its implication in hippocampal perfusion. Brain, 2020, 143, e59-e59.	3.7	1
38	The upper cervical spinal cord in ALS assessed by cross-sectional and longitudinal 3T MRI. Scientific Reports, 2020, 10, 1783.	1.6	7
39	Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply. Journal of Biological Chemistry, 2020, 295, 4383-4397.	1.6	43
40	Sonographic and 3T-MRI-based evaluation of the tongue in ALS. NeuroImage: Clinical, 2020, 26, 102233.	1.4	11
41	Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain, 2020, 143, 622-634.	3.7	81
42	Peripheral nerve imaging in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2020, 131, 2315-2326.	0.7	22
43	AANEM – IFCN glossary of terms in neuromuscular electrodiagnostic medicine and ultrasound. Clinical Neurophysiology, 2020, 131, 1662-1663.	0.7	8
44	Dyspnea as a Fatigue-Promoting Factor in ALS and the Role of Objective Indicators of Respiratory Impairment. Journal of Pain and Symptom Management, 2020, 60, 430-438.e1.	0.6	8
45	Acute symptomatic extracranial internal carotid occlusion – natural course and clinical impact. Vasa - European Journal of Vascular Medicine, 2020, 49, 31-38.	0.6	8
46	Advancing diagnostic criteria for sporadic cerebral amyloid angiopathy: Study protocol for a multicenter MRI-pathology validation of Boston criteria v2.0. International Journal of Stroke, 2019, 14, 956-971.	2.9	39
47	Dyspnea in amyotrophic lateral sclerosis: The Dyspnea-ALS-Scale (DALS-15) essentially contributes to the diagnosis of respiratory impairment. Respiratory Medicine, 2019, 154, 116-121.	1.3	8
48	The Dyspnea-ALS-Scale (DALS-15) optimizes individual treatment in patients with amyotrophic lateral sclerosis (ALS) suffering from dyspnea. Health and Quality of Life Outcomes, 2019, 17, 95.	1.0	4
49	Toward <i>in vivo</i> determination of peripheral nervous system immune activity in amyotrophic lateral sclerosis. Muscle and Nerve, 2019, 59, 567-576.	1.0	21
50	Automated Quantification of Enlarged Perivascular Spaces in Clinical Brain MRI Across Sites. Lecture Notes in Computer Science, 2019, , 103-111.	1.0	1
51	Untersuchung des zervikalen Rückenmarkes bei ALS – eine 3T MRT Studie. , 2019, 38, .		0
52	Regionen-spezifische motorische Verhaltenstestungen bei ALS-Patienten im Vergleich zu gesunden Kontrollen. Nervenheilkunde, 2019, 38, .	0.0	0
53	Nervensonographische Textur- und Grauwertmarker bei ALS. Nervenheilkunde, 2019, 38, .	0.0	0
54	Differential involvement of forearm muscles in ALS does not relate to sonographic structural nerve alterations. Clinical Neurophysiology, 2018, 129, 1438-1443.	0.7	9

#	Article	IF	CITATIONS
55	Peripheral nerve atrophy together with higher cerebrospinal fluid progranulin indicate axonal damage in amyotrophic lateral sclerosis. Muscle and Nerve, 2018, 57, 273-278.	1.0	17
56	CSF Neurofilament Light Chain Levels in Primary Progressive MS: Signs of Axonal Neurodegeneration. Frontiers in Neurology, 2018, 9, 1037.	1.1	22
57	CSF-Progranulin and Neurofilament Light Chain Levels in Patients With Radiologically Isolated Syndrome—Sign of Inflammation. Frontiers in Neurology, 2018, 9, 1075.	1.1	21
58	Significance of CSF NfL and tau in ALS. Journal of Neurology, 2018, 265, 2633-2645.	1.8	45
59	Quantitative Susceptibility MRI to Detect Brain Iron in Amyotrophic Lateral Sclerosis. Radiology, 2018, 289, 195-203.	3.6	61
60	Reader response: Serum neurofilament light is sensitive to active cerebral small vessel disease. Neurology, 2018, 90, 1126-1126.	1.5	0
61	The association between hypertensive arteriopathy and cerebral amyloid angiopathy in spontaneously hypertensive strokeâ€prone rats. Brain Pathology, 2018, 28, 844-859.	2.1	31
62	Common Impact of Chronic Kidney Disease and Brain Microhemorrhages on Cerebral Aβ Pathology in SHRSP. Brain Pathology, 2017, 27, 169-180.	2.1	14
63	Vascular basement membrane alterations and β-amyloid accumulations in an animal model of cerebral small vessel disease. Clinical Science, 2017, 131, 1001-1013.	1.8	38
64	Alzheimer Disease Signature Neurodegeneration and <i>APOE</i> Genotype in Mild Cognitive Impairment With Suspected Non–Alzheimer Disease Pathophysiology. JAMA Neurology, 2017, 74, 650.	4.5	24
65	Loss of corticospinal tract integrity in early MS disease stages. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e399.	3.1	37
66	Hypercholesterolemia induced cerebral small vessel disease. PLoS ONE, 2017, 12, e0182822.	1.1	34
67	Quantifying disease progression in amyotrophic lateral sclerosis using peripheral nerve sonography. Muscle and Nerve, 2016, 54, 391-397.	1.0	40
68	P1â€295: SNAP: Alzheimer's Disease Plus Overlapping Nonâ€Ad Patterns in The Aging Brain?. Alzheimer's and Dementia, 2016, 12, P533.	0.4	0
69	Impact of lifestyle dimensions on brain pathology and cognition. Neurobiology of Aging, 2016, 40, 164-172.	1.5	23
70	Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis. NeuroImage: Clinical, 2016, 11, 408-414.	1.4	51
71	O5-02-01: Brain and cognitive correlates of subjective cognitive decline differ between healthy elderly with and without β-amyloid pathology. , 2015, 11, P315-P316.		0
72	Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes. JAMA Neurology, 2015, 72, 1183.	4.5	57

#	Article	IF	CITATIONS
73	Peripheral nerve ultrasound in amyotrophic lateral sclerosis phenotypes. Muscle and Nerve, 2015, 51, 669-675.	1.0	55
74	Hypertension drives parenchymal βâ€amyloid accumulation in the brain parenchyma. Annals of Clinical and Translational Neurology, 2014, 1, 124-129.	1.7	37
75	Intravital imaging in spontaneously hypertensive stroke-prone rats-a pilot study. Experimental & Translational Stroke Medicine, 2014, 6, 1.	3.2	16
76	The Cerebrovascular Basement Membrane: Role in the Clearance of β-amyloid and Cerebral Amyloid Angiopathy. Frontiers in Aging Neuroscience, 2014, 6, 251.	1.7	97
77	Impact of N-Acetylcysteine on Cerebral Amyloid-β Plaques and Kidney Damage in Spontaneously Hypertensive Stroke-Prone Rats. Journal of Alzheimer's Disease, 2014, 42, S305-S313.	1.2	5
78	Interplay Between Age, Cerebral Small Vessel Disease, Parenchymal Amyloid-β, and Tau Pathology: Longitudinal Studies in Hypertensive Stroke-Prone Rats. Journal of Alzheimer's Disease, 2014, 42, S205-S215.	1.2	39
79	P2-040: HYPERTENSION RESULTS IN CHANGES TO THE CEREBROVASCULATURE OF SPONTANEOUSLY HYPERTENSIVE STROKE PRONE RATS: IMPLICATIONS FOR THE PATHOGENESIS OF ALZHEIMER'S DISEASE. , 2014, 10, P484-P484.		Ο
80	Early microvascular dysfunction in cerebral small vessel disease is not detectable on 3.0 Tesla magnetic resonance imaging: a longitudinal study in spontaneously hypertensive stroke-prone rats. Experimental & Translational Stroke Medicine, 2013, 5, 8.	3.2	18
81	NAC changes the course of cerebral small vessel disease in SHRSP and reveals new insights for the meaning of stases - a randomized controlled study. Experimental & Translational Stroke Medicine, 2013, 5, 5.	3.2	8
82	Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model. Experimental & Translational Stroke Medicine, 2013, 5, 4.	3.2	121
83	Microbleeds in cerebral small vessel disease. Lancet Neurology, The, 2013, 12, 735-736.	4.9	19
84	Mitofusin 2 mutations affect mitochondrial function by mitochondrial DNA depletion. Acta Neuropathologica, 2013, 125, 245-256.	3.9	65
85	Sonography of the median nerve in CMT1A, CMT2A, CMTX, and HNPP. Muscle and Nerve, 2013, 47, 385-395.	1.0	69
86	The Pathologic Cascade of Cerebrovascular Lesions in SHRSP: Is Erythrocyte Accumulation an Early Phase?. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 278-290.	2.4	75
87	Natalizumab-associated central nervous system lymphoma? - Another patient. Multiple Sclerosis Journal, 2012, 18, 1653-1654.	1.4	11
88	Assessment of Cortical Hemodynamics by Multichannel Near-Infrared Spectroscopy in Steno-Occlusive Disease of the Middle Cerebral Artery. Stroke, 2012, 43, 2980-2985.	1.0	21
89	Stases are associated with blood–brain barrier damage and a restricted activation of coagulation in SHRSP. Journal of the Neurological Sciences, 2012, 322, 71-76.	0.3	25
90	Do basophile structures as age dependent phenomenon indicate small vessel wall damage?. Microvascular Research, 2012, 84, 375-377.	1.1	1

#	Article	IF	CITATIONS
91	Risk of wound hematoma at carotid endarterectomy under dual antiplatelet therapy. Langenbeck's Archives of Surgery, 2012, 397, 1275-1282.	0.8	20
92	Detecting Artery Occlusion and Critical Flow Diminution in the Case of an AcuteÂlschemic Stroke – Methodological Pitfalls of Common Vascular Diagnostic Methods. Ultraschall in Der Medizin, 2011, 32, 274-280.	0.8	2
93	Increased density of GAD65/67 immunoreactive neurons in the posterior subiculum and parahippocampal gyrus in treated patients with chronic schizophrenia. World Journal of Biological Psychiatry, 2011, 12, 57-65.	1.3	24
94	Kidney Pathology Precedes and Predicts the Pathological Cascade of Cerebrovascular Lesions in Stroke Prone Rats. PLoS ONE, 2011, 6, e26287.	1.1	25
95	Bilateral posterior RION after concomitant radiochemotherapy with temozolomide in a patient with glioblastoma multiforme: a case report. BMC Cancer, 2010, 10, 520.	1.1	7
96	Implementation and Efficacy of Selective Sonographic Screening for Carotid Disease before Cardiac Surgery. Annals of Vascular Surgery, 2010, 24, 382-387.	0.4	0
97	Simultaneous Occurrence and Interaction of Hypoperfusion and Embolism in a Patient With Severe Middle Cerebral Artery Stenosis. Stroke, 2009, 40, e478-80.	1.0	20