Juan A Ballesteros-Canovas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9307130/publications.pdf

Version: 2024-02-01

39 papers 1,318 citations

18 h-index 35 g-index

40 all docs

40 docs citations

40 times ranked

2060 citing authors

#	Article	IF	CITATIONS
1	Palaeoclimate constraints on the impact of 2 \hat{A}° C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	5.4	166
2	Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nature Climate Change, 2021, 11, 411-417.	8.1	146
3	Citizen science for hydrological risk reduction and resilience building. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1262.	2.8	104
4	Disentangling the effects of competition and climate on individual tree growth: A retrospective and dynamic approach in Scots pine. Forest Ecology and Management, 2015, 358, 12-25.	1.4	100
5	Dating and quantification of erosion processes based on exposed roots. Earth-Science Reviews, 2013, 123, 18-34.	4.0	77
6	What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both?. Agricultural and Forest Meteorology, 2015, 206, 151-162.	1.9	76
7	Positive associations among rare species and their persistence in ecological assemblages. Nature Ecology and Evolution, 2020, 4, 40-45.	3.4	65
8	Floods at the northern foothills of the Tatra Mountains â€" A Polish-Swiss research project. Acta Geophysica, 2014, 62, 620-641.	1.0	53
9	Relationships between earthquakes, hurricanes, and landslides in Costa Rica. Landslides, 2019, 16, 1539-1550.	2.7	44
10	Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System. Journal of Hydrology, 2015, 529, 468-479.	2.3	42
11	Dendrogeomorphic reconstruction of floods in a dynamic tropical river. Geomorphology, 2020, 359, 107133.	1.1	42
12	Dry Spells and Extreme Precipitation are The Main Trigger of Landslides in Central Europe. Scientific Reports, 2019, 9, 14560.	1.6	39
13	Paleoflood discharge reconstruction in Tatra Mountain streams. Geomorphology, 2016, 272, 92-101.	1.1	35
14	Forest productivity in southwestern Europe is controlled by coupled North Atlantic and Atlantic Multidecadal Oscillations. Nature Communications, 2017, 8, 2222.	5.8	33
15	Recent flood hazards in Kashmir put into context with millennium-long historical and tree-ring records. Science of the Total Environment, 2020, 722, 137875.	3.9	29
16	Quantifying Soil Erosion from Hiking Trail in a Protected Natural Area in the Spanish Pyrenees. Land Degradation and Development, 2017, 28, 2255-2267.	1.8	28
17	Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. Earth Surface Processes and Landforms, 2015, 40, 1146-1157.	1.2	23
18	Glacial geomorphology of the Chirrip \tilde{A}^3 National Park, Costa Rica. Journal of Maps, 2019, 15, 538-545.	1.0	20

#	Article	IF	Citations
19	Climate reverses directionality in the richness–abundance relationship across the World's main forest biomes. Nature Communications, 2020, 11, 5635.	5.8	20
20	Reconstruction of debris-flow activity in a temperate mountain forest catchment of central Mexico. Journal of Mountain Science, 2019, 16, 2096-2109.	0.8	16
21	Modelling the 2012 Lahar in a Sector of Jamapa Gorge (Pico de Orizaba Volcano, Mexico) Using RAMMS and Tree-Ring Evidence. Water (Switzerland), 2020, 12, 333.	1.2	16
22	On the extraordinary winter flood episode over the North Atlantic Basin in 1936. Annals of the New York Academy of Sciences, 2019, 1436, 206-216.	1.8	15
23	Neotropical Hypericum irazuense shrubs reveal recent ENSO variability in Costa Rican páramo. Dendrochronologia, 2020, 61, 125704.	1.0	15
24	Tree-ring based, regional-scale reconstruction of flash floods in Mediterranean mountain torrents. Catena, 2020, 189, 104481.	2.2	15
25	Utilisation des isotopes stables de l'oxygène des cernes d'arbres pour déterminer l'origine des inondations passéesÂ: premiers résultats pour la péninsule ibérique. Quaternaire, 2015, , 67-80.	0.1	15
26	Assessing strategies to mitigate debris-flow risk in Abancay province, south-central Peruvian Andes. Geomorphology, 2019, 342, 127-139.	1.1	12
27	Fire damage to cambium affects localized xylem anatomy and hydraulics: the case of Nothofagus pumilio in Patagonia. American Journal of Botany, 2019, 106, 1536-1544.	0.8	12
28	XRCT images and variograms reveal 3D changes in wood density of riparian trees affected by floods. Trees - Structure and Function, 2015, 29, 1115-1126.	0.9	11
29	Historical floods and dendrochronological dating of a wooden deck in the Old Mint of Segovia, Spain. Geoarchaeology - an International Journal, 2011, 26, 786-808.	0.7	10
30	Dendrochronology Course In ValsaÃn Forest, Segovia, Spain. Tree-Ring Research, 2013, 69, 93-100.	0.4	9
31	Floods in Mountain Basins. GeoPlanet: Earth and Planetary Sciences, 2016, , 23-37.	0.2	8
32	Reconstruction of gully erosion based on exposed tree roots in a recent landform of Paricutin Volcano, Mexico. Earth Surface Processes and Landforms, 2022, 47, 742-755.	1.2	5
33	Forest stocks control longâ€ŧerm climatic mortality risks in Scots pine dryâ€edge forests. Ecosphere, 2020, 11, e03201.	1.0	4
34	Long-term lahar reconstruction in Jamapa Gorge, Pico de Orizaba (Mexico) based on botanical evidence and numerical modelling. Landslides, 2021, 18, 3381-3392.	2.7	3
35	R. S. Sigafoos's 1961 and 1964 papers on botanical evidence of paleofloods. Progress in Physical Geography, 2015, 39, 405-411.	1.4	2
36	XRCT images reveal climate control on wound recovery after intense flood in Mediterranean riparian trees. Trees - Structure and Function, 2022, 36, 1529-1538.	0.9	2

#	Article	IF	CITATIONS
37	Laboratory and Field Protocol for Estimating Sheet Erosion Rates from Dendrogeomorphology. Journal of Visualized Experiments, 2019, , .	0.2	1
38	Estimation of recent peat accumulation with tree saplings. Progress in Physical Geography, 2022, 46, 515-529.	1.4	1
39	Cambios ambientales detectados por dendrogeomorfologÃa y la liquenometrÃa para el análisis de avenidas torrenciales en sistemas fluviales. Cuadernos De GeografÃa De La Universitat De València, 2022, , 93.	0.0	0