
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alzheimer's neuropathology in Down syndrome: From gestation to old age. , 2022, , 11-44.		Ο
2	Co-expression network analysis of frontal cortex during the progression of Alzheimer's disease. Cerebral Cortex, 2022, 32, 5108-5120.	1.6	4
3	Complement C3a Receptor (C3aR) Mediates Vascular Dysfunction, Hippocampal Pathology, and Cognitive Impairment in a Mouse Model of VCID. Translational Stroke Research, 2022, , 1.	2.3	4
4	Neurogenesis and neuronal differentiation in the postnatal frontal cortex in Down syndrome. Acta Neuropathologica Communications, 2022, 10, .	2.4	11
5	Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Communications, 2022, 4, .	1.5	10
6	Telomeric alterations in the default mode network during the progression of Alzheimer's disease: Selective vulnerability of the precuneus. Neuropathology and Applied Neurobiology, 2021, 47, 428-440.	1.8	9
7	Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 645334.	1.7	10
8	Comparative neuropathology in aging primates: A perspective. American Journal of Primatology, 2021, 83, e23299.	0.8	11
9	Postnatal Cytoarchitecture and Neurochemical Hippocampal Dysfunction in Down Syndrome. Journal of Clinical Medicine, 2021, 10, 3414.	1.0	4
10	Chronic traumatic encephalopathy and the nucleus basalis of Meynert. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 182, 9-29.	1.0	2
11	Maternal Choline Supplementation as a Potential Therapy for Down Syndrome: Assessment of Effects Throughout the Lifespan. Frontiers in Aging Neuroscience, 2021, 13, 723046.	1.7	8
12	Editorial: Down Syndrome, Neurodegeneration and Dementia. Frontiers in Aging Neuroscience, 2021, 13, 791044.	1.7	2
13	Regional binding of tau and amyloid PET tracers in Down syndrome autopsy brain tissue. Molecular Neurodegeneration, 2020, 15, 68.	4.4	18
14	Neuron loss associated with age but not Alzheimer's disease pathology in the chimpanzee brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190619.	1.8	17
15	Further understanding the connection between Alzheimer's disease and Down syndrome. Alzheimer's and Dementia, 2020, 16, 1065-1077.	0.4	52
16	Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 58.	3.1	28
17	YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology. Nature Communications, 2020, 11, 507.	5.8	62
18	Braak Stage, Cerebral Amyloid Angiopathy, and Cognitive Decline in Early Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 74, 189-197.	1.2	18

#	Article	IF	CITATIONS
19	Expression profiling of precuneus layer <scp>III</scp> cathepsin Dâ€immunopositive pyramidal neurons in mild cognitive impairment and Alzheimer's disease: Evidence for neuronal signaling vulnerability. Journal of Comparative Neurology, 2020, 528, 2748-2766.	0.9	5
20	Neuropathological correlates of amyloid PET imaging in Down syndrome. Developmental Neurobiology, 2019, 79, 750-766.	1.5	34
21	Nerve Growth Factor Pathobiology During the Progression of Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 533.	1.4	60
22	Brain-derived neurotrophic factor (BDNF) and TrkB hippocampal gene expression are putative predictors of neuritic plaque and neurofibrillary tangle pathology. Neurobiology of Disease, 2019, 132, 104540.	2.1	32
23	Exosome release and cargo in Down syndrome. Developmental Neurobiology, 2019, 79, 639-655.	1.5	15
24	Maternal Choline Supplementation Alters Basal Forebrain Cholinergic Neuron Gene Expression in the Ts65Dn Mouse Model of Down Syndrome. Developmental Neurobiology, 2019, 79, 664-683.	1.5	13
25	Frontal cortex and striatal cellular and molecular pathobiology in individuals with Down syndrome with and without dementia. Acta Neuropathologica, 2019, 137, 413-436.	3.9	32
26	Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.	4.9	48
27	Tau pathology in the medial temporal lobe of athletes with chronic traumatic encephalopathy: a chronic effects of neurotrauma consortium study. Acta Neuropathologica Communications, 2019, 7, 207.	2.4	15
28	Astrocytic changes with aging and Alzheimer's diseaseâ€ŧype pathology in chimpanzees. Journal of Comparative Neurology, 2019, 527, 1179-1195.	0.9	30
29	<scp>HDAC</scp> 2 dysregulation in the nucleus basalis of Meynert during the progression of Alzheimer's disease. Neuropathology and Applied Neurobiology, 2019, 45, 380-397.	1.8	38
30	Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer's disease. Hippocampus, 2019, 29, 422-439.	0.9	45
31	Tau Oligomer Pathology in Nucleus Basalis Neurons During the Progression of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2018, 77, 246-259.	0.9	31
32	Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study. Journal of Neurotrauma, 2018, 35, 1260-1271.	1.7	21
33	Frontal Cortex Epigenetic Dysregulation During the Progression of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 115-131.	1.2	36
34	Cognitive composite score association with Alzheimer's disease plaque and tangle pathology. Alzheimer's Research and Therapy, 2018, 10, 90.	3.0	23
35	Microglia changes associated to Alzheimer's disease pathology in aged chimpanzees. Journal of Comparative Neurology, 2018, 526, 2921-2936.	0.9	30
36	Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiology of Disease, 2018, 117, 125-136.	2.1	37

#	Article	IF	CITATIONS
37	Neocortical and hippocampal TREM2 protein levels during the progression of Alzheimer's disease. Neurobiology of Aging, 2017, 54, 133-143.	1.5	33
38	Loss of precuneus dendritic spines immunopositive for spinophilin is related to cognitive impairment in early Alzheimer's disease. Neurobiology of Aging, 2017, 55, 159-166.	1.5	28
39	Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring. Neuroscience, 2017, 340, 501-514.	1.1	35
40	Cognitive Domain Dispersion Association with Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2017, 58, 575-583.	1.2	16
41	Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathologica Communications, 2017, 5, 8.	2.4	197
42	Statistical considerations for assessing cognition and neuropathology associations in preclinical Alzheimer's disease. Biostatistics and Epidemiology, 2017, 1, 92-104.	0.4	4
43	Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease. Neurobiology of Aging, 2017, 59, 107-120.	1.5	93
44	Frontal Cortex and Hippocampal γ-Secretase Activating Protein Levels in Prodromal Alzheimer Disease. Neurodegenerative Diseases, 2017, 17, 235-241.	0.8	11
45	Biomarkers for the Early Detection and Progression of Alzheimer's Disease. Neurotherapeutics, 2017, 14, 35-53.	2.1	128
46	Neuronal exosomes reveal Alzheimer's disease biomarkers in Down syndrome. Alzheimer's and Dementia, 2017, 13, 541-549.	0.4	94
47	Cholinergic profiles in the Goettingen miniature pig (<i>Sus scrofa domesticus</i>) brain. Journal of Comparative Neurology, 2017, 525, 553-573.	0.9	9
48	Static and Dynamic Cognitive Reserve Proxy Measures: Interactions with Alzheimer's Disease Neuropathology and Cognition. , 2017, 07, .		13
49	Molecular and cellular pathophysiology of preclinical Alzheimer's disease. Behavioural Brain Research, 2016, 311, 54-69.	1.2	99
50	Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease. Neurobiology of Aging, 2016, 42, 80-90.	1.5	25
51	NPT088 reduces both amyloidâ€Î² and tau pathologies in transgenic mice. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2016, 2, 141-155.	1.8	36
52	Tenascin-C Is Associated with Cored Amyloid-β Plaques in Alzheimer Disease and Pathology Burdened Cognitively Normal Elderly. Journal of Neuropathology and Experimental Neurology, 2016, 75, 868-876.	0.9	31
53	Progression of tau pathology within cholinergic nucleus basalis neurons in chronic traumatic encephalopathy: A chronic effects of neurotrauma consortium study. Brain Injury, 2016, 30, 1399-1413.	0.6	21
54	Neuritic and Diffuse Plaque Associations with Memory in Non-Cognitively Impaired Elderly. Journal of Alzheimer's Disease, 2016, 53, 1641-1652.	1.2	48

#	Article	IF	CITATIONS
55	Early Alzheimer's disease–type pathology in the frontal cortex ofÂwild mountain gorillas (Gorilla) Tj ETQq1 1 C	0.784314 1.5	rgBJ_/Overloc
56	Oxidative stress and hippocampal synaptic protein levels in elderly cognitively intact individuals with Alzheimer's disease pathology. Neurobiology of Aging, 2016, 42, 1-12.	1.5	69
57	Braak stage and trajectory of cognitive decline in noncognitively impaired elders. Neurobiology of Aging, 2016, 43, 101-110.	1.5	28
58	Braak staging, plaque pathology, and APOE status in elderly persons without cognitive impairment. Neurobiology of Aging, 2016, 37, 147-153.	1.5	43
59	Cerebrospinal Fluid proNGF: A Putative Biomarker for Early Alzheimer's Disease. Current Alzheimer Research, 2016, 13, 800-808.	0.7	35
60	Editorial (Thematic Issue: The Link between Alzheimer's Disease and Down Syndrome. A Historical) Tj ETQq0 0 0	rgBT_/Ove	rlo <u>ck</u> 10 Tf 50
61	Evidence for a neuroprotective microRNA pathway in amnestic mild cognitive impairment. Frontiers in Neuroscience, 2015, 9, 430.	1.4	64
62	Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease. Current Alzheimer Research, 2015, 13, 97-106.	0.7	47
63	Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome. Current Alzheimer Research, 2015, 13, 35-52.	0.7	41
64	Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome. Current Alzheimer Research, 2015, 13, 84-96.	0.7	27
65	Hippocampal plasticity during the progression of Alzheimer's disease. Neuroscience, 2015, 309, 51-67.	1.1	120
66	Cortical pyroglutamate amyloid-β levels and cognitive decline in Alzheimer's disease. Neurobiology of Aging, 2015, 36, 12-19.	1.5	29
67	Resilience of Precuneus Neurotrophic Signaling Pathways Despite Amyloid Pathology in Prodromal Alzheimer's Disease. Biological Psychiatry, 2015, 77, 693-703.	0.7	38
68	Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Structure and Function, 2015, 220, 3143-3165.	1.2	83
69	Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiology of Disease, 2014, 70, 32-42.	2.1	75
70	Maternal choline supplementation differentially alters the basal forebrain cholinergic system of youngâ€adult Ts65Dn and disomic mice. Journal of Comparative Neurology, 2014, 522, 1390-1410.	0.9	35
71	Synaptic Change in the Posterior Cingulate Gyrus in the Progression of Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 1073-1090.	1.2	112
72	Sex Differences in the Cholinergic Basal Forebrain in the <scp>Ts65Dn</scp> Mouse Model of <scp>D</scp> own Syndrome and <scp>A</scp> lzheimer's Disease. Brain Pathology, 2014, 24, 33-44.	2.1	51

#	Article	IF	CITATIONS
73	Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology, 2014, 79, 172-179.	2.0	109
74	Prefibrillar Tau Oligomers in Mild Cognitive Impairment and Alzheimer's Disease. Neurodegenerative Diseases, 2014, 13, 151-153.	0.8	42
75	Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiology of Disease, 2013, 58, 92-101.	2.1	100
76	Sex Steroid Levels and <scp>AD</scp> â€Like Pathology in 3x <scp>T</scp> g <scp>AD</scp> Mice. Journal of Neuroendocrinology, 2013, 25, 131-144.	1.2	34
77	Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (<i>Gorilla gorilla gorilla</i>). Journal of Comparative Neurology, 2013, 521, 4318-4338.	0.9	74
78	Synapse Stability in the Precuneus Early in the Progression of Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 35, 599-609.	1.2	50
79	Hippocampal Drebrin Loss in Mild Cognitive Impairment. Neurodegenerative Diseases, 2012, 10, 216-219.	0.8	75
80	Hippocampal ProNGF Signaling Pathways and β-Amyloid Levels in Mild Cognitive Impairment and Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1018-1029.	0.9	89
81	Rac1b Increases with Progressive Tau Pathology within Cholinergic Nucleus Basalis Neurons in Alzheimer's Disease. American Journal of Pathology, 2012, 180, 526-540.	1.9	30
82	Mild cognitive impairment: pathology and mechanisms. Acta Neuropathologica, 2012, 123, 13-30.	3.9	189
83	Dimebon alters hippocampal amyloid pathology in 3xTg-AD mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 115-27.	0.8	17
84	Progression of Tau Pathology in Cholinergic Basal Forebrain Neurons in Mild Cognitive Impairment and Alzheimer's Disease. American Journal of Pathology, 2011, 179, 2533-2550.	1.9	101
85	Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer's disease. Journal of Chemical Neuroanatomy, 2011, 42, 111-117.	1.0	31
86	Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Journal of Chemical Neuroanatomy, 2011, 42, 102-110.	1.0	107
87	Association of early experience with neurodegeneration in aged primates. Neurobiology of Aging, 2011, 32, 151-156.	1.5	11
88	MRI-based volumetric measurement of the substantia innominata in amnestic MCI and mild AD. Neurobiology of Aging, 2011, 32, 1756-1764.	1.5	42
89	Effect of Neocortical and Hippocampal Amyloid Deposition upon Galaninergic and Cholinergic Neurites in Al̂2PPswe/PS1l̂"E9 Mice. Journal of Alzheimer's Disease, 2011, 25, 491-504.	1.2	19
90	Endogenous Galanin Protects Mouse Hippocampal Neurons Against Amyloid Toxicity in vitro via Activation of Galanin Receptor-2. Journal of Alzheimer's Disease, 2011, 25, 455-462.	1.2	33

#	Article	IF	CITATIONS
91	Cholinotrophic basal forebrain system alterations in 3xTg-AD transgenic mice. Neurobiology of Disease, 2011, 41, 338-352.	2.1	77
92	Precuneus amyloid burden is associated with reduced cholinergic activity in Alzheimer disease. Neurology, 2011, 77, 39-47.	1.5	82
93	Regional Selectivity of rab5 and rab7 Protein Upregulation in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 631-639.	1.2	110
94	Putative CSF protein biomarker candidates for amnestic mild cognitive impairment. Translational Neuroscience, 2010, 1, 2-8.	0.7	12
95	Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. Journal of Neurochemistry, 2010, 113, 649-660.	2.1	130
96	Staging of Alzheimer's Pathology in Triple Transgenic Mice: A Light and Electron Microscopic Analysis. International Journal of Alzheimer's Disease, 2010, 2010, 1-24.	1.1	59
97	Inability of Plasma and Urine F2A-Isoprostane Levels to Differentiate Mild Cognitive Impairment from Alzheimer's Disease. Neurodegenerative Diseases, 2010, 7, 139-142.	0.8	32
98	Microarray Analysis of Hippocampal CA1 Neurons Implicates Early Endosomal Dysfunction During Alzheimer's Disease Progression. Biological Psychiatry, 2010, 68, 885-893.	0.7	229
99	Preservation of cortical sortilin protein levels in MCI and Alzheimer's disease. Neuroscience Letters, 2010, 471, 129-133.	1.0	40
100	Neuroprotective Role for Galanin in Alzheimer's Disease. Exs, 2010, 102, 143-162.	1.4	37
101	β-Amyloid Deposition and Functional Impairment in the Retina of the APPswe/PS1ΔE9 Transgenic Mouse Model of Alzheimer's Disease. , 2009, 50, 793.		197
102	Galanin Fiber Hyperinnervation Preserves Neuroprotective Gene Expression in Cholinergic Basal Forebrain Neurons in Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 885-896.	1.2	53
103	Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert Review of Neurotherapeutics, 2008, 8, 1703-1718.	1.4	493
104	Galanin Hyperinnervation Upregulates Choline Acetyltransferase Expression in Cholinergic Basal Forebrain Neurons in Alzheimer's Disease. Neurodegenerative Diseases, 2008, 5, 228-231.	0.8	33
105	Cholinotrophic Molecular Substrates of Mild Cognitive Impairment in the Elderly. Current Alzheimer Research, 2007, 4, 340-350.	0.7	91
106	Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology, 2007, 68, 1501-1508.	1.5	676
107	α7 Nicotinic Receptor Up-regulation in Cholinergic Basal Forebrain Neurons in Alzheimer Disease. Archives of Neurology, 2007, 64, 1771.	4.9	103
108	Superior Frontal Cortex Cholinergic Axon Density in Mild Cognitive Impairment and Early Alzheimer Disease. Archives of Neurology, 2007, 64, 1312.	4.9	59

#	Article	IF	CITATIONS
109	Cholinergic forebrain degeneration in the APPswe/PS1ΔE9 transgenic mouse. Neurobiology of Disease, 2007, 28, 3-15.	2.1	87
110	Neuronal gene expression profiling: uncovering the molecular biology of neurodegenerative disease. Progress in Brain Research, 2006, 158, 197-222.	0.9	42
111	Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 2006, 27, 1372-1384.	1.5	854
112	Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Journal of Neurochemistry, 2006, 96, 1401-1408.	2.1	93
113	Down regulation of trk but not p75NTRgene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease. Journal of Neurochemistry, 2006, 97, 475-487.	2.1	229
114	Single cell gene expression profiling in Alzheimer's disease. NeuroRx, 2006, 3, 302-318.	6.0	71
115	Differential Expression of Synaptic Proteins in the Frontal and Temporal Cortex of Elderly Subjects With Mild Cognitive Impairment. Journal of Neuropathology and Experimental Neurology, 2006, 65, 592-601.	0.9	183
116	Galanin Fiber Hypertrophy within the Cholinergic Nucleus Basalis during the Progression of Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2006, 21, 205-214.	0.7	40
117	Single cell gene expression profiling in Alzheimer's disease. Neurotherapeutics, 2006, 3, 302-318.	2.1	Ο
118	Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease. Journal of Neurochemistry, 2005, 93, 1412-1421.	2.1	614
119	Galanin plasticity in the cholinergic basal forebrain in Alzheimer's disease and transgenic mice. Neuropeptides, 2005, 39, 233-237.	0.9	33
120	The Role of Nerve Growth Factor Receptors in Cholinergic Basal Forebrain Degeneration in Prodromal Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2005, 64, 263-272.	0.9	210
121	Single-Cell Gene Expression Analysis: Implications for Neurodegenerative and Neuropsychiatric Disorders. Neurochemical Research, 2004, 29, 1053-1064.	1.6	84
122	Reduction of cortical TrkA but not p75NTR protein in early-stage Alzheimer's disease. Annals of Neurology, 2004, 56, 520-531.	2.8	181
123	Increased proNGF Levels in Subjects with Mild Cognitive Impairment and Mild Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2004, 63, 641-649.	0.9	212
124	Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. Journal of Chemical Neuroanatomy, 2003, 26, 233-242.	1.0	266
125	Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: Correlation with Alzheimer's neuropathology. Journal of Alzheimer's Disease, 2003, 5, 39-48.	1.2	129
126	Neuronal Cell Death Is Preceded by Cell Cycle Events at All Stages of Alzheimer's Disease. Journal of Neuroscience, 2003, 23, 2557-2563.	1.7	441

#	Article	IF	CITATIONS
127	Preservation of Brain Nerve Growth Factor in Mild Cognitive Impairment and Alzheimer Disease. Archives of Neurology, 2003, 60, 1143.	4.9	65
128	Galanin in Alzheimer Disease. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 137-156.	3.4	56
129	Galanin receptor over-expression within the amygdala in early Alzheimer's disease:. Journal of Chemical Neuroanatomy, 2002, 24, 109-116.	1.0	33
130	Long-term plastic changes in galanin innervation in the rat basal forebrain. Neuroscience, 2002, 115, 787-795.	1.1	18
131	Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Annals of Neurology, 2002, 51, 145-155.	2.8	639
132	Loss of basal forebrain P75NTR immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. Journal of Comparative Neurology, 2002, 443, 136-153.	0.9	195
133	Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease. Neurochemical Research, 2002, 27, 1035-1048.	1.6	141
134	Neuropathology of Mice Carrying Mutant APPswe and/or PS1M146L Transgenes: Alterations in the p75NTR Cholinergic Basal Forebrain Septohippocampal Pathway. Experimental Neurology, 2001, 170, 227-243.	2.0	79
135	Tau-66: evidence for a novel tau conformation in Alzheimer's disease. Journal of Neurochemistry, 2001, 77, 1372-1385.	2.1	94
136	Distribution of galaninergic immunoreactivity in the brain of the mouse. Journal of Comparative Neurology, 2001, 434, 158-185.	0.9	136
137	Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Annals of Neurology, 2001, 49, 202-213.	2.8	397
138	Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Annals of Neurology, 2001, 49, 202-13.	2.8	171
139	Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer's disease. Journal of Comparative Neurology, 2000, 427, 19-30.	0.9	225
140	Reduction in TrkAâ€Immunoreactive Neurons Is Not Associated with an Overexpression of Galaninergic Fibers Within the Nucleus Basalis in Down's Syndrome. Journal of Neurochemistry, 2000, 74, 1185-1196.	2.1	63
141	Novel Method to Quantify Neuropil Threads in Brains from Elders With or Without Cognitive Impairment. Journal of Histochemistry and Cytochemistry, 2000, 48, 1627-1637.	1.3	77
142	Galanin receptor plasticity within the nucleus basalis in early and late Alzheimer's disease: an in vitro autoradiographic analysis. Neuropharmacology, 2000, 39, 1404-1412.	2.0	43
143	Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. Journal of Comparative Neurology, 1999, 411, 693-704.	0.9	235
144	Entorhinal Cortex β-Amyloid Load in Individuals with Mild Cognitive Impairment. Experimental Neurology, 1999, 158, 469-490.	2.0	226

#	Article	IF	CITATIONS
145	Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. Journal of Comparative Neurology, 1999, 411, 693-704.	0.9	80
146	Reduction in p140-TrkA Receptor Protein within the Nucleus Basalis and Cortex in Alzheimer's Disease. Experimental Neurology, 1997, 146, 91-103.	2.0	175
147	A Confocal Microscopic Analysis of Galaninergic Hyperinnervation of Cholinergic Basal Forebrain Neurons in Alzheimer's Disease. Brain Pathology, 1997, 7, 723-730.	2.1	86
148	Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. Journal of Comparative Neurology, 1997, 385, 352-371.	0.9	45
149	Connections of the hippocampal formation in humans: II. The endfolial fiber pathway. , 1997, 385, 352.		1
150	Cholinesterases colocalize with sites of neurofibrillary degeneration in aged and Alzheimer's brains. Acta Neuropathologica, 1994, 87, 284-292.	3.9	43
151	Nerve growth factor-like immunoreactive profiles in the primate basal forebrain and hippocampal formation. Journal of Comparative Neurology, 1994, 341, 507-519.	0.9	59
152	TRK-immunoreactivity in the monkey central nervous system: Forebrain. Journal of Comparative Neurology, 1994, 349, 20-35.	0.9	53
153	TrkAâ€immunoreactive profiles in the central nervous system: Colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase, and serotonin. Journal of Comparative Neurology, 1994, 350, 587-611.	0.9	321
154	Apolipoprotein E-immunoreactivity in aged rhesus monkey cortex: Colocalization with amyloid plaques. Neurobiology of Aging, 1994, 15, 621-627.	1.5	56
155	Galanin immunoreactivity within the primate basal forebrain: Evolutionary change between monkeys and apes. Journal of Comparative Neurology, 1993, 336, 31-39.	0.9	64
156	Immunocytochemical distribution of peptidergic and cholinergic fibers in the human amygdala: their depletion in Alzheimer's disease and morphologic alteration in non-demented elderly with numerous senile plaques. Brain Research, 1993, 625, 125-138.	1.1	43
157	Galaninergic Innervation of the Cholinergic Vertical Limb of the Diagonal Band (Ch2) and Bed Nucleus of the Stria terminalis in Aging, Alzheimer's Disease and Down's Syndrome (Part 1 of 2). Dementia and Geriatric Cognitive Disorders, 1993, 4, 237-243.	0.7	65
158	Galanin immunoreactivity in the primate central nervous system. Journal of Comparative Neurology, 1992, 319, 479-500.	0.9	161
159	Nerve growth factor receptor immunoreactivity within the nucleus basalis (Ch4) in Parkinson's disease: reduced cell numbers and co-localization with cholinergic neurons. Brain Research, 1991, 539, 19-30.	1.1	49
160	Galanin-like immunoreactivity within the primate basal forebrain: Differential staining patterns between humans and monkeys. Journal of Comparative Neurology, 1990, 294, 281-292.	0.9	119
161	Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: Colocalization with cholinergic neurons. Journal of Comparative Neurology, 1989, 285, 196-217.	0.9	242
162	Loss of nerve growth factor receptor-containing neurons in Alzheimer's disease: A quantitative analysis across subregions of the basal forebrain. Experimental Neurology, 1989, 105, 221-232.	2.0	271

#	Article	IF	CITATIONS
163	NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer's disease. Experimental Neurology, 1989, 106, 222-236.	2.0	151
164	Neurofibrillary tangles in cholinergic pedunculopontine neurons in Alzheimer's disease. Annals of Neurology, 1988, 24, 623-629.	2.8	90
165	Observations on choline acetyltransferase containing structures in the CD-1 mouse brain. Neuroscience Letters, 1988, 84, 7-12.	1.0	36
166	Cortical effects of neurotoxic damage to the nucleus basalis in rats: persistent loss of extrinsic cholinergic input and lack of transsynaptic effect upon the number of somatostatin-containing, cholinesterase-positive, and cholinergic cortical neurons. Brain Research, 1987, 417, 385-388.	1.1	52
167	Age-related shrinkage of cortically projecting cholinergic neurons: A selective effect. Annals of Neurology, 1987, 22, 31-36.	2.8	104
168	Cholinergic projections from the parabigeminal nucleus (Ch8) to the superior colliculus in the mouse: a combined analysis of horseradish peroxidase transport and choline acetyltransferase immunohistochemistry. Brain Research, 1986, 370, 144-148.	1.1	139
169	Three-dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for horseradish peroxidase. Brain Research, 1986, 367, 301-308.	1.1	111
170	Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. Journal of Comparative Neurology, 1984, 227, 109-120.	0.9	226
171	Cortical projections arising from the basal forebrain: A study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience, 1984, 13, 627-643.	1.1	718
172	Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience, 1984, 12, 669-686.	1.1	563
173	Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience, 1983, 10, 1185-1201.	1.1	2,229
174	Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey. Journal of Comparative Neurology, 1983, 214, 170-197.	0.9	1,868
175	Insula of the old world monkey. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. Journal of Comparative Neurology, 1982, 212, 1-22.	0.9	603
176	Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. Journal of Comparative Neurology, 1982, 212, 23-37.	0.9	515
177	Insula of the old world monkey. III: Efferent cortical output and comments on function. Journal of Comparative Neurology, 1982, 212, 38-52.	0.9	940
178	Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer's disease. , 0, .		1