Tong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. Nanoscale, 2016, 8, 2999-3007.	2.8	194
2	Bifunctional MOFs-Based Ratiometric Electrochemical Sensor for Multiplex Heavy Metal Ions. ACS Applied Materials & Interfaces, 2020, 12, 30770-30778.	4.0	112
3	Hydrogen-Bond-Mediated <i>in Situ</i> Fabrication of AgNPs/Agar/PAN Electrospun Nanofibers as Reproducible SERS Substrates. ACS Applied Materials & Interfaces, 2015, 7, 1586-1594.	4.0	97
4	A functional preservation strategy for the production of highly photoluminescent emerald carbon dots for lysosome targeting and lysosomal pH imaging. Nanoscale, 2018, 10, 14705-14711.	2.8	86
5	An active structure preservation method for developing functional graphitic carbon dots as an effective antibacterial agent and a sensitive pH and Al(<scp>iii</scp>) nanosensor. Nanoscale, 2017, 9, 17334-17341.	2.8	76
6	Photoinduced Electron Transfer Process Visualized on Single Silver Nanoparticles. ACS Nano, 2017, 11, 2085-2093.	7.3	75
7	Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing. ACS Applied Materials & Interfaces, 2016, 8, 14802-14811.	4.0	64
8	Functional preserving carbon dots-based fluorescent probe for mercury (II) ions sensing in herbal medicines via coordination and electron transfer. Analytica Chimica Acta, 2018, 1035, 203-210.	2.6	60
9	Recent insights into functionalized electrospun nanofibrous films for chemo-/bio-sensors. TrAC - Trends in Analytical Chemistry, 2020, 124, 115813.	5.8	51
10	A portable RGB sensing gadget for sensitive detection of Hg2+ using cysteamine-capped QDs as fluorescence probe. Biosensors and Bioelectronics, 2017, 98, 36-40.	5.3	49
11	Carbon dots as nanocatalytic medicine for anti-inflammation therapy. Journal of Colloid and Interface Science, 2022, 611, 545-553.	5.0	49
12	Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. Nanoscale, 2017, 9, 17020-17028.	2.8	47
13	Ratiometrically Fluorescent Electrospun Nanofibrous Film as a Cu ²⁺ -Mediated Solid-Phase Immunoassay Platform for Biomarkers. Analytical Chemistry, 2018, 90, 9966-9974.	3.2	46
14	Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III). Mikrochimica Acta, 2017, 184, 3171-3178.	2.5	37
15	Carbon Quantum Dots–Europium(III) Energy Transfer Architecture Embedded in Electrospun Nanofibrous Membranes for Fingerprint Security and Document Counterspy. Analytical Chemistry, 2019, 91, 11185-11191.	3.2	35
16	Fe-MOFs as signal probes coupling with DNA tetrahedral nanostructures for construction of ratiometric electrochemical aptasensor. Analytica Chimica Acta, 2020, 1135, 123-131.	2.6	34
17	Nitrogen and phosphorus doped polymer carbon dots as a sensitive cellular mapping probe of nitrite. Journal of Materials Chemistry B, 2019, 7, 2074-2080.	2.9	31
18	Development of a portable device for Ag+ sensing using CdTe QDs as fluorescence probe via an electron transfer process. Talanta, 2019, 191, 357-363.	2.9	30

Tong Yang

#	Article	IF	CITATIONS
19	Synergetic Catalytic Effect of Cu2–xSe Nanoparticles and Reduced Graphene Oxide Coembedded in Electrospun Nanofibers for the Reduction of a Typical Refractory Organic Compound. ACS Applied Materials & Interfaces, 2015, 7, 15447-15457.	4.0	29
20	Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Advances, 2020, 10, 9723-9729.	1.7	28
21	A galvanic exchange process visualized on single silver nanoparticles <i>via</i> dark-field microscopy imaging. Nanoscale, 2018, 10, 12805-12812.	2.8	27
22	2,4,6-Trinitrophenol detection by a new portable sensing gadget using carbon dots as a fluorescent probe. Analytical and Bioanalytical Chemistry, 2019, 411, 2291-2300.	1.9	26
23	Efficient visible-light photocatalytic heterojunctions formed by coupling plasmonic Cu _{2â^'x} Se and graphitic carbon nitride. New Journal of Chemistry, 2015, 39, 6186-6192.	1.4	24
24	Graphitic C3N4 nanosheet and hemin/G-quadruplex DNAzyme-based label-free chemiluminescence aptasensing for biomarkers. Talanta, 2019, 192, 400-406.	2.9	23
25	lodide/metal-organic frameworks (MOF) -mediated signal amplification strategy for the colorimetric detection of H2O2, Cr2O72â°' and H2S. Analytica Chimica Acta, 2021, 1159, 338378.	2.6	17
26	A visual peroxidase mimicking aptasensor based on Pt nanoparticles-loaded on iron metal organic gel for fumonisin B1 analysis in corn meal. Biosensors and Bioelectronics, 2022, 209, 114241.	5.3	17
27	<scp>pHâ€responsive</scp> chitosan/sulfobutyl etherâ€Î²â€cyclodextrin supramolecular nanoparticles for controlled release of sodium ferulate. Polymer Engineering and Science, 2020, 60, 2403-2413.	1.5	15
28	lodide-enhanced Co/Fe-MOFs nanozyme for sensitively colorimetric detection of H2S. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120117.	2.0	12
29	Highly sensitive and convenient aptasensor based on Au NPs@Ce-TpBpy COF for quantitative determination of zearalenone. RSC Advances, 2022, 12, 17312-17320.	1.7	12
30	A single nucleotide polymorphism electrochemical sensor based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probes. Mikrochimica Acta, 2021, 188, 266.	2.5	11
31	An electrochemical immunosensor coupling a bamboo-like carbon nanostructure substrate with toluidine blue-functionalized Cu(<scp>ii</scp>)-MOFs as signal probes for a C-reactive protein assay. RSC Advances, 2021, 11, 6699-6708.	1.7	11
32	An electrochemical aptasensor based on intelligent walking DNA nanomachine with cascade signal amplification powered by nuclease for Mucin 1 assay. Analytica Chimica Acta, 2022, 1214, 339964.	2.6	11
33	Nonstoichiometric copper chalcogenides for photo-activated alkyne/azide cycloaddition. Physical Chemistry Chemical Physics, 2017, 19, 6964-6968.	1.3	9
34	Modulation of inner filter effect between plasmonic Cu2â^'S Se1â^' and rhodamine 6G for detection of biothiols. Sensors and Actuators B: Chemical, 2018, 262, 966-973.	4.0	9
35	Europium coordination polymer particles based electrospun nanofibrous film for point-of-care testing of copper (II) ions. Talanta, 2021, 228, 122270.	2.9	9
	pH-responsive nanoparticles based on sodium dodecylbenzene sulfonate and polyamine-modified		

cyclodextrins for controlled release of metformin hydrochloride. Iranian Polymer Journal (English) Tj ETQq0 0 0 rgBTi/@verlock10 Tf 50 5

TONG YANG

#	Article	IF	CITATIONS
37	lodide-enhanced Cu-MOF nanomaterials for the amplified colorimetric detection of Fe ³⁺ . Analytical Methods, 2021, 13, 5851-5858.	1.3	5
38	A label-free turn ON–OFF chemiluminescence strategy for lysozyme detection by target-triggered Cu _{2â^'x} Se aggregation. Analytical Methods, 2019, 11, 4376-4381.	1.3	4
39	pH-responsive supramolecular nanoparticles based on sulfobutylether ₇ -β-CD/cationic surfactant and its controllable release of doxorubicin. Journal of Dispersion Science and Technology, 2023, 44, 1116-1125.	1.3	4
40	Glutathione-driven Cu(<scp>i</scp>)–O ₂ chemistry: a new light-up fluorescent assay for intracellular glutathione. Analyst, The, 2018, 143, 2486-2490.	1.7	3
41	CdTe Quantum Dots-Electrospun Nanofibers Assembly for Visual and Portable Detection of Cu2+. Chinese Journal of Analytical Chemistry, 2021, 49, 207-215.	0.9	3