You Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306582/publications.pdf

Version: 2024-02-01

49 2,969 21 papers citations h-index

57 57 57 2967 all docs citations times ranked citing authors

50

g-index

#	Article	IF	CITATIONS
1	Automated Chemical <scp>Solidâ€Phase</scp> Synthesis of Glycans. Chinese Journal of Chemistry, 2022, 40, 1714-1728.	4.9	8
2	Chemical synthesis of polysaccharides. Current Opinion in Chemical Biology, 2022, 69, 102154.	6.1	20
3	NIS/TMSOTf-Promoted Glycosidation of Glycosyl <i>ortho</i> -Hexynylbenzoates for Versatile Synthesis of <i>O</i> -Glycosides and Nucleosides. Journal of Organic Chemistry, 2021, 86, 4763-4778.	3.2	18
4	Promoter-Assisted Stereoselective Synthesis of the 6-Deoxy-Î ² - <scp>d</scp> - <i>manno</i> -heptopyranose Oligosaccharides. Organic Letters, 2021, 23, 3216-3220.	4.6	4
5	Photolabile Protecting <scp>Groupâ€Mediated</scp> Synthesis of <scp>2â€Deoxyâ€Glycosides</scp> . Chinese Journal of Chemistry, 2021, 39, 3309-3314.	4.9	14
6	Chemical Synthesis of Saponins. Advances in Carbohydrate Chemistry and Biochemistry, 2021, 79, 63-150.	0.9	12
7	Dimethylformamide-Modulated Kdo Glycosylation for Stereoselective Synthesis of \hat{l}_{\pm} -Kdo Glycosides. Organic Letters, 2020, 22, 981-985.	4.6	14
8	Synthesis and immunomodulatory activity of the sulfated tetrasaccharide motif of type B ulvanobiuronic acid 3-sulfate. Organic and Biomolecular Chemistry, 2020, 18, 7932-7935.	2.8	6
9	Total Synthesis and Immunological Evaluation of the Tri- <scp>d</scp> - <i>glycero</i> - <scp>d</scp> - <i>glycero</i> - <i>Heptose Antigen of the Lipopolysaccharide as a Vaccine Candidate against <i>Helicobacter pylori</i>- Organic Letters, 2020, 22, 8780-8785.</i>	4.6	10
10	Synthesis of <scp>l</scp> - <i>glycero</i> - and <scp>d</scp> - <i>glycero</i> - <scp>d</scp> - <i>manno</i> -Heptose Building Blocks for Stereoselective Assembly of the Lipopolysaccharide Core Trisaccharide of <i>Vibrio parahemolyticus</i> O2. Organic Letters, 2020, 22, 8018-8022.	4.6	9
11	Gold(I)-Catalyzed Intermolecular Rearrangement Reaction of Glycosyl Alkynoic \hat{I}^2 -Ketoesters for the Synthesis of 4-O-Glycosylated 2-Pyrones. Journal of Organic Chemistry, 2019, 84, 14141-14150.	3.2	10
12	Synthesis of the \hat{l}^2 -linked GalNAc-Kdo disaccharide antigen of the capsular polysaccharide of Kingella kingae KK01. Organic and Biomolecular Chemistry, 2019, 17, 1694-1697.	2.8	4
13	Microbe-focused glycan array screening platform. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1958-1967.	7.1	71
14	Total Synthesis of the Trisaccharide Antigen of the <i>Campylobacter jejuni</i> RM1221 Capsular Polysaccharide via de Novo Synthesis of the 6-Deoxy- <scp>d</scp> - <i>manno</i> -heptose Building Blocks. Journal of Organic Chemistry, 2019, 84, 2393-2403.	3.2	10
15	Gold(<scp>i</scp>)-promoted α-selective sialylation of glycosyl <i>ortho</i> hexynylbenzoates for the latent-active synthesis of oligosialic acids. Organic and Biomolecular Chemistry, 2019, 17, 6580-6584.	2.8	6
16	Gold(I)-promoted synthesis of a \hat{l}^2 -(1,3)-glucan hexadecasaccharide via the highly convergent strategy. Carbohydrate Research, 2019, 482, 107735.	2.3	6
17	Highly convergent synthesis of a \hat{l}^2 -mannuronic acid alginate hexadecasaccharide. Organic and Biomolecular Chemistry, 2019, 17, 6174-6177.	2.8	9
18	Gold(I)-Catalyzed Glycosylation with Glycosyl Ynenoates as Donors. Organic Letters, 2019, 21, 9693-9698.	4.6	30

#	Article	IF	CITATIONS
19	Synthesis of 3- <i>C</i> -Branched Kdo Analogues via Sonogashira Coupling of 3-lodo Kdo Glycal with Terminal Alkynes. Journal of Organic Chemistry, 2018, 83, 6171-6177.	3.2	15
20	Rapid and efficient conversion of sialyl thioglycosides to sialyl esters via NIS/BF 3 OEt 2 -promoted glycosylation. Tetrahedron Letters, 2017, 58, 2370-2373.	1.4	2
21	Gold(I)-catalyzed synthesis of \hat{I}^2 -Kdo glycosides using Kdo ortho-hexynylbenzoate as donor. Carbohydrate Research, 2017, 448, 161-165.	2.3	19
22	An efficient approach to chloro(organophosphine) gold(<scp>i</scp>) complexes for the synthesis of auranofin. Green Chemistry, 2017, 19, 634-637.	9.0	9
23	Recent Advances in the Chemical Synthesis of <i>C</i> Glycosides. Chemical Reviews, 2017, 117, 12281-12356.	47.7	398
24	Design, Synthesis, and Evaluation of Ribose-Modified Anilinopyrimidine Derivatives as EGFR Tyrosine Kinase Inhibitors. Frontiers in Chemistry, 2017, 5, 101.	3.6	3
25	Synthesis of D-manno-heptulose via a cascade aldol/hemiketalization reaction. Beilstein Journal of Organic Chemistry, 2017, 13, 795-799.	2.2	4
26	Structure binding relationship of human surfactant protein D and various lipopolysaccharide inner core structures. Journal of Structural Biology, 2016, 195, 387-395.	2.8	16
27	Antigenic Potential of a Highly Conserved Neisseria meningitidis Lipopolysaccharide Inner Core Structure Defined by Chemical Synthesis. Chemistry and Biology, 2015, 22, 38-49.	6.0	41
28	Naturally Occurring Polyphenolic Glucosidase Inhibitors. Israel Journal of Chemistry, 2015, 55, 268-284.	2.3	20
29	ortho-(Methyltosylaminoethynyl)benzyl glycosides as new glycosyl donors for latent-active glycosylation. Chemical Communications, 2015, 51, 13957-13960.	4.1	49
30	O-Glycosylation methods in the total synthesis of complex natural glycosides. Natural Product Reports, 2015, 32, 1331-1355.	10.3	158
31	Chemical Synthesis of Saponins. Advances in Carbohydrate Chemistry and Biochemistry, 2014, 71, 137-226.	0.9	67
32	Recent advances in the synthesis of chitooligosaccharides and congeners. Tetrahedron, 2014, 70, 1023-1046.	1.9	63
33	Efficient synthesis of a library of heparin tri- and tetrasaccharides relevant to the substrate of heparanase. Organic Chemistry Frontiers, 2014, 1, 405-414.	4.5	26
34	Epitope Recognition of Antibodies against a <i>Yersinia pestis</i> Lipopolysaccharide Trisaccharide Component. ACS Chemical Biology, 2014, 9, 867-873.	3.4	21
35	Diversity-oriented Synthesis of Inner Core Oligosaccharides of the Lipopolysaccharide of Pathogenic Gram-negative Bacteria. Journal of the American Chemical Society, 2013, 135, 6262-6271.	13.7	53
36	Total synthesis of the core tetrasaccharide of Neisseria meningitidislipopolysaccharide, a potential vaccine candidate for meningococcal diseases. Chemical Science, 2012, 3, 896-899.	7.4	54

#	Article	IF	CITATIONS
37	Synthesis, Evaluation, and Mechanism of <i>N</i> , <i>N</i> , <i>N<!--</td--><td>tive 2.6</td><td>42</td></i>	tive 2.6	42
38	Gold(I)â€Catalyzed Glycosylation with Glycosyl <i>ortho</i> â€Alkynylbenzoates as Donors: General Scope and Application in the Synthesis of a Cyclic Triterpene Saponin. Chemistry - A European Journal, 2010, 16, 1871-1882.	3.3	206
39	Chemoselective glycosylation of carboxylic acid with glycosyl ortho-hexynylbenzoates as donors. Tetrahedron Letters, 2010, 51, 1504-1507.	1.4	25
40	Total Synthesis and Structural Revision of TMG-chitotriomycin, a Specific Inhibitor of Insect and Fungal \hat{I}^2 -(i>N-Acetylglucosaminidases. Journal of the American Chemical Society, 2009, 131, 12076-12077.	13.7	111
41	An efficient glycosylation protocol with glycosyl ortho-alkynylbenzoates as donors under the catalysis of Ph3PAuOTf. Tetrahedron Letters, 2008, 49, 3604-3608.	1.4	288
42	N-Dimethylphosphoryl-protected glucosamine trichloroacetimidate as an effective glycosylation donor. Tetrahedron Letters, 2007, 48, 4557-4560.	1.4	17
43	N-Dimethylphosphoryl-protection in the efficient synthesis of glucosamine-containing oligosaccharides with alternate N-acyl substitutions. Tetrahedron Letters, 2007, 48, 7049-7052.	1.4	10
44	Shape-Controlled Synthesis and Growth Mechanism of One-Dimensional Nanostructures of Trigonal Tellurium ChemInform, 2004, 35, no.	0.0	1
45	Size-Controlled Synthesis and Growth Mechanism of Monodisperse Tellurium Nanorods by a Surfactant-Assisted Method. Langmuir, 2004, 20, 214-218.	3.5	159
46	Large-Scale Synthesis of Ultralong Bi2S3 Nanoribbons via a Solvothermal Process. Advanced Materials, 2003, 15, 936-940.	21.0	210
47	Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts. Advanced Materials, 2003, 15, 1946-1948.	21.0	280
48	Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process. Journal of Physical Chemistry B, 2003, 107, 12658-12661.	2.6	230
49	Shape-controlled synthesis and growth mechanism of one-dimensional nanostructures of trigonal tellurium. New Journal of Chemistry, 2003, 27, 1748.	2.8	106