Vladimir A Volkovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306531/publications.pdf Version: 2024-02-01

		394421	414414
220	1,610	19	32
papers	citations	h-index	g-index
221	221	221	070
231	231	231	878
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural Characterization of a Lanthanum Bistriflimide Complex, La(N(SO2CF3)2)3(H2O)3, and an Investigation of La, Sm, and Eu Electrochemistry in a Room-Temperature Ionic Liquid, [Me3NnBu][N(SO2CF3)2]. Inorganic Chemistry, 2005, 44, 4934-4940.	4.0	121
2	Treatment of molten salt wastes by phosphate precipitation: removal of fission product elements after pyrochemical reprocessing of spent nuclear fuels in chloride melts. Journal of Nuclear Materials, 2003, 323, 49-56.	2.7	88
3	Group 15 quaternary alkyl bistriflimides: ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes. Dalton Transactions RSC, 2002, , 4532-4534.	2.3	84
4	In Situ Spectroscopy and Spectroelectrochemistry of Uranium in High-Temperature Alkali Chloride Molten Salts. Inorganic Chemistry, 2008, 47, 7474-7482.	4.0	54
5	Vibrational spectra of alkali metal (Li, Na and K) uranates and consequent assignment of uranate ion site symmetry. Vibrational Spectroscopy, 1998, 17, 83-91.	2.2	46
6	A review of the high temperature oxidation of uranium oxides in molten salts and in the solid state to form alkali metal uranates, and their composition and properties. Journal of Nuclear Materials, 1999, 274, 229-251.	2.7	40
7	The electronic spectra of alkali metal uranates and band assignments: an analysis of their diffuse reflectance spectra. Physical Chemistry Chemical Physics, 2001, 3, 5182-5191.	2.8	35
8	Formation of lanthanide phosphates in molten salts and evaluation for nuclear waste treatment. Physical Chemistry Chemical Physics, 2003, 5, 3053.	2.8	30
9	A new method for determining oxygen solubility in molten carbonates and carbonate–chloride mixtures using the oxidation of UO2 to uranate reaction. Journal of Nuclear Materials, 2000, 282, 152-158.	2.7	29
10	Thermodynamic properties of uranium in gallium–aluminium based alloys. Journal of Nuclear Materials, 2015, 465, 153-160.	2.7	28
11	Thermodynamic properties of La–Ga–Al and U–Ga–Al alloys and the separation factor of U/La couple in the molten salt–liquid metal system. Journal of Nuclear Materials, 2015, 466, 373-378.	2.7	28
12	Reprocessing spent nuclear fuel using molten carbonates and subsequent precipitation of rare earth fission products using phosphate. Journal of Alloys and Compounds, 2006, 418, 116-121.	5.5	27
13	Increased oxidation of UO2in molten alkali-metal carbonate based mixtures by increasing oxygen solubility and by controlled generation of superoxide ions, and evidence for a new sodium uranate. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3819-3826.	1.7	26
14	Reactions and speciation of technetium and rhenium in chloride melts: a spectroscopy study. Physical Chemistry Chemical Physics, 2002, 4, 5753-5760.	2.8	26
15	Oxidation of UO2 in molten alkali-metal carbonate mixtures: formation of uranates and diuranates. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 5059.	1.7	24
16	Thermodynamic properties of uranium in Ga–In based alloys. Journal of Nuclear Materials, 2013, 438, 94-98.	2.7	22
17	Thermodynamic properties of uranium in liquid gallium, indium and their alloys. Journal of Nuclear Materials, 2015, 464, 263-269.	2.7	22
18	The structures of the active intermediates in Catalyst-Enhanced Molten Salt Oxidation and a new method for the complete destruction of chemical warfare arsenicals. Structural Chemistry, 2010, 21, 291-297.	2.0	20

#	Article	IF	CITATIONS
19	Molybdenum chemistry in molten LiCl–KCl eutectic: an electrochemical and absorption spectroscopy study of the concentration dependent stability of solutions of K3MoCl6. Electrochimica Acta, 1999, 44, 4619-4629.	5.2	19
20	Solubilities and solubilisation enthalpies of alkali metal uranates(VI) in carbonate melts. Physical Chemistry Chemical Physics, 1999, 1, 3297-3302.	2.8	18
21	A New Technology for the Nuclear Industry for the Complete and Continuous Pyrochemical Reprocessing of Spent Nuclear Fuel: Catalyst Enhanced Molten Salt Oxidation. Nuclear Technology, 2008, 163, 382-400.	1.2	18
22	The effect of Al concentration on thermodynamic properties of Nd and U in Ga–Al-based alloys and the separation factor of Nd/U couple in a "molten salt-liquid metal system― Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 687-693.	1.5	18
23	Thermodynamic properties of ternary Me-Ga-In (Me = La, U) alloys in a fused Ga-In/LiCl-KCl system. Journal of Chemical Thermodynamics, 2019, 130, 228-234.	2.0	18
24	Uranium Oligomerization in Chloride-Based High Temperature Melts:  In Situ XAS Studies. Inorganic Chemistry, 2005, 44, 2-4.	4.0	17
25	Thermodynamic properties of lanthanum in gallium–indium eutectic based alloys. Journal of Nuclear Materials, 2013, 435, 202-206.	2.7	17
26	Selective ion exchange recovery of rare earth elements from uranium mining solutions. AIP Conference Proceedings, 2016, , .	0.4	17
27	Thermodynamics of La and U and the separation factor of U/La in fused Me(Ga-40Âwt.% In)/3LiCl-2KCl system. Journal of Nuclear Materials, 2017, 495, 285-290.	2.7	17
28	Electronic absorption spectra of rare earth (III) species in NaCl–2CsCl eutectic based melts. AIP Conference Proceedings, 2016, , .	0.4	16
29	Oxidation of ceramic uranium dioxide in alkali metal carbonate-based melts: a study using various oxidants and comparison with UO2 powder. Journal of Nuclear Materials, 1998, 256, 131-138.	2.7	15
30	Thermodynamics of rare earth elements and uranium in gallium based quaternary metallic alloys. Journal of Alloys and Compounds, 2019, 787, 367-378.	5.5	15
31	A Spectroscopic Study of Uranium Species Formed in Chloride Melts. Journal of Nuclear Science and Technology, 2002, 39, 595-598.	1.3	14
32	Structures of chloro-uranium species in molten LiCl–BeCl2 eutectic: A combined X-ray and electronic absorption spectroscopy study. Journal of Nuclear Materials, 2005, 344, 100-103.	2.7	14
33	On the formation of uranium(V) species in alkali chloride melts. Pure and Applied Chemistry, 2010, 82, 1701-1717.	1.9	14
34	An electrochemical study of uranium behaviour in LiCl–KCl–CsCl eutectic melt. Journal of Nuclear Materials, 2015, 467, 956-963.	2.7	14
35	Separation of Lanthanides and Actinides in a Chloride Melt - Liquid Metal System: The Effect of Phase Composition. ECS Transactions, 2016, 75, 397-408.	0.5	14
36	Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations. Inorganic Chemistry, 2018, 57, 1184-1195.	4.0	14

#	Article	IF	CITATIONS
37	Behavior of molybdenum in pyrochemical reprocessing: A spectroscopic study of the chlorination of molybdenum and its oxides in chloride melts. Journal of Nuclear Materials, 2003, 323, 93-100.	2.7	13
38	Chemical solubility of alkali metal uranate(VI) species in molten carbonates under basic and acidic conditions. Physical Chemistry Chemical Physics, 2000, 2, 3029-3035.	2.8	12
39	Raman and infrared spectra of rubidium and caesium uranates(VI) and some problems assigning diuranate site symmetries. Vibrational Spectroscopy, 2001, 25, 223-230.	2.2	12
40	Effect of Melt Composition on the Reaction of Uranium Dioxide with Hydrogen Chloride in Molten Alkali Chlorides. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 671-676.	1.5	12
41	Effect of Temperature on Chromaticity Coordinates over a 700° Range: A Study of Alkali Metal Uranates. Dyes and Pigments, 1998, 39, 139-157.	3.7	11
42	Electrochemical and Thermodynamic Properties of Lanthanum in a Chloride Melt – Liquid Metal System. ECS Transactions, 2016, 75, 265-274.	0.5	11
43	Thermodynamics of uranium in (Ga + Sn) eutectic alloy. Journal of Chemical Thermodynamics, 2016, 93, 95-100.	2.0	11
44	Electrochemical Behavior of Dysprosium in Fused LiCl–KCl Eutectic at Solid Inert Mo and Liquid Active Ga Electrodes. Journal of the Electrochemical Society, 2020, 167, 112510.	2.9	11
45	Corrosion of Stainless Steel in NaCl-KCl Based Melts. ECS Transactions, 2010, 33, 321-327.	0.5	10
46	Corrosion of Corrosion-Resistant and High-Temperature Nickel-Based Alloys in Chloroaluminate Melts. ECS Transactions, 2014, 64, 217-226.	0.5	10
47	Electrode and Redox Potentials of Molybdenum and Stability of Molybdenum Chloro-Species in Alkali Chloride Melts. Journal of the Electrochemical Society, 2017, 164, H5336-H5344.	2.9	10
48	Behaviour of Rare Earth Elements in Molten Salts in Relation to Pyrochemical Reprocessing of Spent Nuclear Fuels. ECS Transactions, 2007, 3, 493-502.	0.5	9
49	Corrosion of Nickel-Based Superalloys in Molten Chloroaluminates. ECS Transactions, 2017, 77, 753-766.	0.5	9
50	Activity coefficients of lanthanum in gallium and gallium-aluminum based alloys. Journal of Alloys and Compounds, 2019, 790, 809-813.	5.5	9
51	Speciation of dysprosium in molten LiCl–KCl–CsCl eutectic: An electrochemistry and spectroscopy study. Journal of Electroanalytical Chemistry, 2022, 904, 115955.	3.8	9
52	Thermodynamics of the Formation of Vanadium(II) Complexes in Chloride Melts. ECS Transactions, 2007, 3, 589-597.	0.5	8
53	Behavior of Molybdenum Chloro-Species in Alkali Chloride-Based Melts: Implications for Spent Nuclear Fuel Treatments. ECS Transactions, 2010, 33, 391-400.	0.5	8
54	Thermodynamics of reaction of praseodymium with gallium–indium eutectic alloy. Journal of Nuclear Materials, 2013, 437, 66-69.	2.7	8

#	Article	IF	CITATIONS
55	Separation of Uranium and Lanthanides in a Fused Salt - Liquid Gallium Based Alloy System. ECS Transactions, 2014, 64, 369-375.	0.5	8
56	An Electrochemical and Spectroelectrochemical Study of Ln(II) (Ln = Sm, Eu, Yb) Species in NaCl-2CsCl Melt. ECS Transactions, 2014, 64, 617-634.	0.5	8
57	Precipitation of Rare Earth Phosphates from Molten Salts: Particle Size Distribution Analysis. ECS Transactions, 2016, 75, 313-321.	0.5	8
58	Thermodynamic properties of lanthanum in gallium–zinc alloys. AIP Conference Proceedings, 2016, , .	0.4	8
59	Oxidation of powder and ceramic UO2 by KClO3 in molten (Li–Na–K)2CO3 eutectic. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2623-2625.	1.7	7
60	Precipitation of Rare Earth Phosphates from NaCl-2CsCl Eutectic Based Melts. ECS Transactions, 2013, 50, 517-527.	0.5	7
61	CEMSO (Catalyst Enhanced Molten Salt Oxidation) for Complete and Continuous Pyrochemical Reprocessing of Spent Nuclear Fuel: An Overview of a Viable New Technology for Next Generation Nuclear Reactors. ECS Transactions, 2007, 3, 467-482.	0.5	6
62	Speciation of Molybdenum and Tungsten in Molten Chlorides: A Spectroelectrochemical Study. ECS Transactions, 2007, 3, 555-566.	0.5	6
63	Spectroelectrochemical Study of Neptunium in Molten LiCl-KCl Eutectic. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 745-748.	1.5	6
64	Spectroelectrochemical Study of Stainless Steel Corrosion in NaCl-KCl Melt. ECS Transactions, 2010, 33, 277-285.	0.5	6
65	Lanthanum Activity, Activity Coefficients and Solubility in Gallium-Indium Liquid Alloys. ECS Transactions, 2014, 64, 227-234.	0.5	6
66	Glycine-Nitrate Combustion Synthesis of ZrO ₂ -Y ₂ O ₃ Nanopowders. Advanced Materials Research, 0, 1103, 37-43.	0.3	6
67	Uranium and neodymium partitioning in alkali chloride melts using low-melting gallium-based alloys. Nukleonika, 2015, 60, 915-920.	0.8	6
68	Corrosion of Austenitic Steels and Their Components in Uranium-Containing Chloride Melts. ECS Transactions, 2017, 77, 847-855.	0.5	6
69	Uranium deposition potentials on solid and liquid cathodes in LiCl–KCl eutectic melt. AIP Conference Proceedings, 2018, , .	0.4	6
70	Electronic absorption spectral study of the oxidation of uranium dioxide in chloride melts. Physical Chemistry Chemical Physics, 2000, 2, 3871-3876.	2.8	5
71	Chemistry of vanadium chlorides in molten salts: An electronic absorption spectroscopy study. Journal of Molecular Liquids, 2003, 103-104, 387-394.	4.9	5
72	Spectroelectrochemical Study of Uranium and Neptunium in LiCl-KCl Eutectic Melt. ECS Transactions, 2007, 3, 503-511.	0.5	5

#	Article	IF	CITATIONS
73	Tungsten Chemistry in Alkali Chloride Melts. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 739-744.	1.5	5
74	Spectroelectrochemical study of molybdenum containing chloride melts. Russian Metallurgy (Metally), 2010, 2010, 150-153.	0.5	5
75	Electronic Absorption Spectra of Vanadium Species in Halide Melts. ECS Transactions, 2010, 33, 287-296.	0.5	5
76	Activity Coefficients and Solubility of Lanthanum and Praseodymium in Gallium-Indium Eutectic Alloy. ECS Transactions, 2013, 50, 507-515.	0.5	5
77	Thermodynamic properties of metallic Ga-In alloys saturated with lanthanum. Russian Metallurgy (Metally), 2014, 2014, 593-598.	0.5	5
78	Electrode potentials of tungsten in fused alkali chlorides. AIP Conference Proceedings, 2016, , .	0.4	5
79	Lanthanum solubility in gallium-aluminum liquid alloys. AIP Conference Proceedings, 2017, , .	0.4	5
80	Thermodynamic properties of rare earth elements in La–RE–Ga–In alloys (RE = Nd, Y). AIP Conference Proceedings, 2017, , .	0.4	5
81	Solubility of lanthanum and uranium in Ga–In and Ga–Al eutectic based alloys. AIP Conference Proceedings, 2018, , .	0.4	5
82	Interaction of Neodymium Containing Chloride Melts with Oxygen Species. ECS Transactions, 2018, 86, 341-350.	0.5	5
83	Research and Development of the pyrochemical processing for the mixed nitride uranium-plutonium fuel. Journal of Physics: Conference Series, 2020, 1475, 012027.	0.4	5
84	Catalytic oxidation of ammonia: A sparkling experiment. Journal of Chemical Education, 2000, 77, 177.	2.3	4
85	Speciation of Rhenium in Chloride Melts: Spectroscopic and Electrochemical Study. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2008, 63, 371-376.	1.5	4
86	A Study of Uranium(V) Species in Alkali Chloride Melts. ECS Transactions, 2009, 16, 325-334.	0.5	4
87	An Electrochemical Study of Uranium (III) and (IV) Species in Fused Alkali Chlorides. ECS Transactions, 2014, 64, 357-367.	O.5	4
88	Thermodynamic properties of alloys of praseodymium with the gallium-indium eutectic melt. Russian Journal of Non-Ferrous Metals, 2014, 55, 550-553.	0.6	4
89	Thermodynamic properties of gadolinium in Ga–Sn and Ga–Zn eutectic based alloys. AIP Conference Proceedings, 2016, , .	0.4	4
90	Diffusion coefficients of the uranium(III) and (IV) ions in the LiCl–KCl–CsCl eutectic melt. Russian Metallurgy (Metally), 2016, 2016, 722-728.	0.5	4

Vladimir A Volkovich

#	Article	IF	CITATIONS
91	Electronic absorption spectra of neodymium(III) ions in alkali chloride melts. AIP Conference Proceedings, 2017, , .	0.4	4
92	Fabrication of rare-earth metals by metallothermic reduction: Thermodynamic modeling and practical realization. AIP Conference Proceedings, 2018, , .	0.4	4
93	Electrochemical Properties of Uranium and Zirconium on Solid and Liquid Electrodes in 3LiCl–2KCl Based Melts. ECS Transactions, 2018, 86, 55-67.	0.5	4
94	Corrosive Resistance of Nickel Hastelloy G-35 Superalloy in Various Aggressive Media. ECS Transactions, 2018, 86, 155-162.	0.5	4
95	Electronic absorption spectra of rare earth (Sm, Eu, Yb) dichlorides in alkali chloride melts. AIP Conference Proceedings, 2019, , .	0.4	4
96	Application of Low Melting Metals for Separation of Uranium and Zirconium in a "Fused Chloride—Liquid Alloy―System. Metals, 2021, 11, 550.	2.3	4
97	Reaction of Oxygen with Solutions of Neodymium Chloride in Alkali Chloride Melts: A Spectroscopy and Kinetics Study. Journal of the Electrochemical Society, 2021, 168, 046513.	2.9	4
98	Emergent Intelligence via Self-Organization in a Group of Robotic Devices. Mathematics, 2021, 9, 1314.	2.2	4
99	Electrochemical properties of gallium in molten alkali metal chlorides. AIP Conference Proceedings, 2020, , .	0.4	4
100	Electrode processes and electrochemical formation of Dy-Ga and Dy-Cd alloys in molten LiCl–KCl–CsCl eutectic. Journal of Electroanalytical Chemistry, 2022, 906, 116012.	3.8	4
101	Electrochemical and Spectroscopic Properties of Technetium in Fused Alkali Metal Chlorides. ECS Transactions, 2010, 33, 381-390.	0.5	3
102	Reaction of Curium(III) Ions with Oxo-Species in Alkali Chloride Melts. ECS Transactions, 2010, 33, 401-408.	0.5	3
103	The Effect of Fission Product Elements on the Behavior of Uranyl Species in Alkali Chloride Melts: a Contribution towards Reprocessing Spent Oxide Fuels. ECS Transactions, 2010, 33, 371-379.	0.5	3
104	Stability of complex molybdenum(III) ions in molten alkali metal chlorides. Russian Metallurgy (Metally), 2012, 2012, 114-118.	0.5	3
105	Study of uranium solubility in gallium-indium eutectic alloy by emf method. Russian Metallurgy (Metally), 2013, 2013, 106-111.	0.5	3
106	Electronic Absorption Spectra of Niobium Species in Halide Melts. ECS Transactions, 2013, 50, 325-338.	0.5	3
107	Corrosion of Ferritic and Ferritic-Martensitic Steels in NaCl-KCl-VCl2 Melts. ECS Transactions, 2013, 50, 699-709.	0.5	3
108	Indirect Methods of Determination of K:Al Mole Ratio in Molten Chloroaluminates. ECS Transactions, 2014, 64, 461-472.	0.5	3

#	Article	IF	CITATIONS
109	Niobium Speciation in NaCl-KCl Based Melts: An Electrochemical and Spectroelectrochemical Study. ECS Transactions, 2014, 64, 389-404.	0.5	3
110	Electrochemical Properties of Molybdenum in Alkali Chloride Melts. ECS Transactions, 2014, 64, 377-387.	0.5	3
111	Electrode potentials of uranium in the LiCl–KCl–CsCl eutectic melt. Russian Metallurgy (Metally), 2015, 2015, 650-653.	0.5	3
112	Thermodynamics of Nd–Ga–Al and U–Ga–Al alloys and uranium/neodymium separation factor in the molten Ga–Al/3LiCl–2KCl system. Radiochemistry, 2015, 57, 591-595.	0.7	3
113	Thermodynamics of Nuclear Waste Reprocessing: Separation of Lanthanides Using Liquid Metals and Alloys. Journal of Nuclear Engineering and Radiation Science, 2015, 1, 031003.	0.4	3
114	A Spectroscopic and Electrochemical Study of Molybdenum(IV) and Tungsten(IV) Species in Alkali Chloride Melts. ECS Transactions, 2016, 75, 417-430.	0.5	3
115	High-temperature corrosion of metals in the salt and metallic melts containing rare earths. AIP Conference Proceedings, 2016, , .	0.4	3
116	Vanadium Speciation in Fused Alkali Chlorides. Journal of the Electrochemical Society, 2017, 164, H5139-H5144.	2.9	3
117	Corrosion resistance of nickel-based alloys in salt and metal melts containing REE. AIP Conference Proceedings, 2017, , .	0.4	3
118	Thermodynamic characteristics of praseodymium in the gallium–aluminum eutectic melt. Russian Chemical Bulletin, 2018, 67, 1601-1607.	1.5	3
119	Reaction of uranium (III) and (VI) chlorides with oxide ions in 3LiCl–2KCl eutectic based melts. AIP Conference Proceedings, 2018, , .	0.4	3
120	Formation of Rare Earth Phosphates in the Melts Based on NaCl–KCl Equimolar Mixture. ECS Transactions, 2018, 86, 329-340.	0.5	3
121	Separation of Uranium and Zirconium: Electrochemical Properties of Zirconium in the 3LiCl–2KCl Melt. Russian Metallurgy (Metally), 2019, 2019, 155-158.	0.5	3
122	Synthesis of HfO2 from hafnium hydroxide hydrate. Journal of Alloys and Compounds, 2019, 790, 405-412.	5.5	3
123	Uranium reduction from chloride melts on solid and liquid metal cathodes. AIP Conference Proceedings, 2019, , .	0.4	3
124	Separation of uranium and zirconium in a "chloride melt – Ga–Zn eutectic alloy―system. AIP Conference Proceedings, 2020, , .	0.4	3
125	Four thallium(I) uranates(VI), their preparation, structure and properties. Journal of Nuclear Materials, 2005, 344, 73-78.	2.7	2
126	The application of the spectroelectrochemical method in the studies of molybdenum, tungsten, and uranium in chloride melts. Russian Journal of Electrochemistry, 2010, 46, 640-645.	0.9	2

#	Article	IF	CITATIONS
127	Corrosion of Nickel-Chromium-Molybdenum Based Alloy in Chloride Melts Containing Transition Metal Ions. ECS Transactions, 2013, 50, 357-366.	0.5	2
128	Molybdenum(V) Species in Alkali Chloride Melts: An Electronic Absorption Spectroscopy Study. ECS Transactions, 2014, 64, 189-195.	0.5	2
129	Corrosion behavior of austenitic steels and their components in niobium-containing chloride melts. Russian Metallurgy (Metally), 2014, 2014, 159-165.	0.5	2
130	Redox potentials of uranium in molten eutectic mixture of lithium, potassium, and cesium chlorides. Russian Metallurgy (Metally), 2016, 2016, 729-732.	0.5	2
131	Electrochemical behavior of zirconium in LiCl–KCl eutectic melt. AIP Conference Proceedings, 2018, , .	0.4	2
132	Processes involving zirconium on solid and liquid cathodes in LiCl–KCl eutectic based melts. AIP Conference Proceedings, 2019, , .	0.4	2
133	Corrosion of Metals and Nickel-Based Alloys in Liquid Bismuth–Lithium Alloy. Metals, 2021, 11, 791.	2.3	2
134	Separation of Uranium and Zirconium in Alkali Chloride Melts Using Liquid Metal Cathodes. ECS Transactions, 2020, 98, 355-364.	0.5	2
135	Corrosion of Metallic Materials in the Molten FLiNaK. ECS Transactions, 2020, 98, 453-462.	0.5	2
136	Electrochemistry of iron, nickel and chromium in LiF–NaF–KF (FLiNaK) eutectic melt: A cyclic voltammetry study. AIP Conference Proceedings, 2020, , .	0.4	2
137	Uranium Electrorefining in 3LiCl-2KCl Based Melts. ECS Transactions, 2020, 98, 443-451.	0.5	2
138	Kinetics of Reaction of Oxygen with Uranium(IV) Chloride in Alkali Chloride Melts. ECS Transactions, 2020, 98, 365-372.	0.5	2
139	A New General and Rapid Method for Investigating Hot Corrosion: Preliminary Tests on Electrodes for Molten Carbonate Fuel Cells. Materials Science Forum, 2004, 461-464, 1133-1140.	0.3	1
140	Uranium-involving electrode processes in chloride melts: An x-ray absorption spectroscopy study. Russian Journal of Electrochemistry, 2007, 43, 977-980.	0.9	1
141	Corrosion of Constructive Materials in Niobium-containing Melts. ECS Transactions, 2009, 16, 357-365.	0.5	1
142	Electrochemical and Spectroscopic Properties of Tellurium in Fused Alkali Chlorides. ECS Transactions, 2009, 16, 335-341.	0.5	1
143	Distribution of Impurities during Vanadium Electrorefining and Determination of Optimal Conditions of the Process. ECS Transactions, 2009, 16, 479-487.	0.5	1
144	Processing of Vanadium and Niobium Electrodeposited from Alkali Chloride Melts. ECS Transactions, 2010, 33, 297-302.	0.5	1

#	Article	IF	CITATIONS
145	Excessive thermodynamic properties of praseodymium in a gallium-indium alloy. Russian Metallurgy (Metally), 2013, 2013, 607-609.	0.5	1
146	Corrosion of Austenitic Steels and Their Components in Vanadium-Containing Chloride Melts. ECS Transactions, 2013, 50, 685-698.	0.5	1
147	Solubility of Transition Metal Halides in Chloroaluminate Melts. ECS Transactions, 2014, 64, 211-216.	0.5	1
148	Redox properties of samarium, europium and ytterbium in molten eutectic mixture of sodium, potassium and cesium chlorides. AIP Conference Proceedings, 2017, , .	0.4	1
149	A novel method of aluminum–gadolinium master alloy production. AIP Conference Proceedings, 2017, ,	0.4	1
150	Thermodynamics and Separation Factor of Uranium from Fission Products in "Liquid Metal-Molten Salt―System. , 0, , .		1
151	Reduction of uranium(VI) species in alkali chloride melts: An electronic absorption spectroscopy study of formation of uranium(V) ions. AIP Conference Proceedings, 2018, , .	0.4	1
152	Vanadium Electrorefining in NaCl–KCl–VCl2 Melts. ECS Transactions, 2018, 86, 37-43.	0.5	1
153	Kinetics of the Reduction of Rare Earth Metals in LiCl–KCl–CsCl Eutectic Melt. ECS Transactions, 2018, 86, 351-358.	0.5	1
154	Solubility of praseodymium in the gallium-aluminum eutectic alloy. AIP Conference Proceedings, 2018, ,	0.4	1
155	Thermodynamics of Rare-Earth Metal Chlorides in the Melts Based on a Eutectic Mixture of Lithium, Potassium, and Cesium Chlorides. Russian Metallurgy (Metally), 2019, 2019, 194-196.	0.5	1
156	Activity of Lanthanum in Zn-Containing Alloys: La–Zn, La–U–Zn, and La–U–Ga–Zn Systems. Russian Metallurgy (Metally), 2019, 2019, 146-148.	0.5	1
157	Electrochemical Properties of Tungsten in Molten Alkali Metal Chlorides. Russian Metallurgy (Metally), 2019, 2019, 149-151.	0.5	1
158	Neodymium solubility in gallium-zinc eutectic alloy. AIP Conference Proceedings, 2019, , .	0.4	1
159	Stationary corrosion potential of technetium in LiCl–KCl–CsCl eutectic melt. AIP Conference Proceedings, 2019, , .	0.4	1
160	Study of ruthenium behavior in alkali chloride melts using electronic absorption spectroscopy. AIP Conference Proceedings, 2019, , .	0.4	1
161	High temperature IR-spectroscopy of lithium, sodium and potassium uranates. AIP Conference Proceedings, 2019, , .	0.4	1
162	Reaction of lithium oxide with LiCl–UCl4 and LiCl–KCl–UCl4 melts. AIP Conference Proceedings, 2019,	0.4	1

#	Article	IF	CITATIONS
163	Reaction of uranium(IV) chloride with oxygen in alkali chloride melts: An electronic absorption spectroscopy study. AIP Conference Proceedings, 2019, , .	0.4	1
164	Reaction of Oxygen with Uranium Trichloride in Molten Alkali Metal Chlorides. Russian Metallurgy (Metally), 2021, 2021, 1040-1043.	0.5	1
165	Formation of Barium and Strontium Phosphates in Chloride Melts. Russian Metallurgy (Metally), 2021, 2021, 1023-1028.	0.5	1
166	Electronic Spectra and Solubilities of Alkali Metal Uranates Formed Upon Oxidation of Uranium Dioxide in Alkali Metal Carbonate and Carbonate-Based Melts. ECS Proceedings Volumes, 1998, 1998-11, 612-626.	0.1	1
167	Electronic absorption spectra of palladium(II) ions in molten eutectic mixture of lithium, potassium and cesium chlorides. AIP Conference Proceedings, 2020, , .	0.4	1
168	Strontium phosphates precipitation from alkali chloride based melts. AIP Conference Proceedings, 2020, , .	0.4	1
169	A spectroelectrochemical study of lanthanide (Yb, Sm, Eu) dichlorides in alkali metal chloride melts. AIP Conference Proceedings, 2020, , .	0.4	1
170	Corrosion of Ceramic and Carbon-Based Materials in FLiNaK. ECS Transactions, 2020, 98, 373-381.	0.5	1
171	Solubility of Rare Earth Oxides in Fused Alkali and Alkaline Earth Halides. ECS Transactions, 2020, 98, 415-424.	0.5	1
172	Reactions and Speciation of Technetium and Rhenium in Chloride Melts: A Spectroscopy Study ChemInform, 2003, 34, no.	0.0	0
173	Study of Causes of Film Formation on the Electrolyte Surface during Niobium Electrorefining. ECS Transactions, 2006, 3, 415-422.	0.5	Ο
174	Uranium Activity and Solubility in Liquid Ga-In Eutectic Alloy: An Electrochemistry Study. ECS Transactions, 2013, 50, 497-505.	0.5	0
175	Electrochemical properties of molybdenum in individual molten alkali metal chlorides and their mixtures. Russian Metallurgy (Metally), 2015, 2015, 141-146.	0.5	Ο
176	Currentless Deposition of Niobium-Based Protective Coatings for Application in Molten Salts. ECS Transactions, 2016, 75, 255-263.	0.5	0
177	The Effect of the Second Coordination Sphere on Vanadium Speciation in Molten Chlorides. ECS Transactions, 2016, 75, 245-253.	0.5	0
178	The interaction of scandium fluoride with alkali metal fluorides. AIP Conference Proceedings, 2017, , .	0.4	0
179	Reduction of ytterbium(III) species in alkali chloride based melts. AIP Conference Proceedings, 2017, , .	0.4	0
180	Formation of rare earth phosphates in NaCl–KCl based melts. AIP Conference Proceedings, 2017, , .	0.4	0

#	Article	IF	CITATIONS
181	Potentiometric study of tungsten-containing chloride melts. AIP Conference Proceedings, 2017, , .	0.4	Ο
182	Redox properties of molybdenum in NaCl–2CsCl eutectic based melts. AIP Conference Proceedings, 2017, , .	0.4	0
183	Corrosion behavior of EP-823 type steel in uranium containing chloride melts. AIP Conference Proceedings, 2018, , .	0.4	0
184	Diffusion coefficients of REE (II) and (III) ions (REE = Sm, Eu, Yb) in molten eutectic mixture of sodium, potassium and cesium chlorides. AIP Conference Proceedings, 2018, , .	0.4	0
185	Electronic absorption spectra of tungsten in alkali chloride based melts. AIP Conference Proceedings, 2018, , .	0.4	0
186	Electronic absorption spectra of erbium(III) ions in alkali chloride melts. AIP Conference Proceedings, 2018, , .	0.4	0
187	An Electrochemical Study of Divalent Ytterbium Species in NaCl–KCl and NaCl–KCl–CsCl Based Melts. ECS Transactions, 2018, 86, 359-365.	0.5	0
188	Ruthenium behaviour in alkali chloride melts. AIP Conference Proceedings, 2018, , .	0.4	0
189	Structure of rare earth phosphates formed in the melts based on the equimolar mixture of sodium and potassium chlorides. AIP Conference Proceedings, 2018, , .	0.4	0
190	Electronic Absorption Spectra of Uranium(V) Species in Fused Alkali Chlorides. ECS Transactions, 2018, 86, 367-376.	0.5	0
191	Preface: Physics, Technologies and Innovation (PTI-2018). AIP Conference Proceedings, 2018, , .	0.4	0
192	Formation of Rare-Earth Element Phosphates in the Melts Based on the Equimolar Mixture of Sodium and Potassium Chlorides. Russian Metallurgy (Metally), 2019, 2019, 152-154.	0.5	0
193	Phosphate precipitation from the melts containing mixtures of rare earth elements: Particle size distribution analysis. AIP Conference Proceedings, 2019, , .	0.4	0
194	Corrosion of construction materials in KCl–LiCl–UCl3 melts containing metallic zinc. AIP Conference Proceedings, 2019, , .	0.4	0
195	Reaction of tungsten dioxide with hydrogen chloride in alkali chloride melts: An electronic absorption spectroscopy study. AIP Conference Proceedings, 2019, , .	0.4	0
196	Preparation and analysis of Prâ \in Gaâ \in Al alloys. AIP Conference Proceedings, 2019, , .	0.4	0
197	Red-ox processes involving niobium in alkali chloride melts. AIP Conference Proceedings, 2019, , .	0.4	0
198	Electrochemical Properties of Uranium and Zirconium on Solid and Liquid Electrodes in 3LiCl–2KCl Based Melts. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
199	Electronic Absorption Spectra of Uranium(V) Species in Fused Alkali Chlorides. ECS Meeting Abstracts, 2018, , .	0.0	0
200	New Industrial Alloy for Molten Salt Application: Design and Properties. ECS Meeting Abstracts, 2018, , .	0.0	0
201	Formation of Rare Earth Phosphates in the Melts Based on NaCl–KCl Equimolar Mixture. ECS Meeting Abstracts, 2018, , .	0.0	Ο
202	Corrosion Resistance of Hastelloy G-35 Nickel-Based Superalloy in Various Aggressive Media. ECS Meeting Abstracts, 2018, , .	0.0	0
203	Interaction of Neodymium Containing Chloride Melts with Oxygen Species. ECS Meeting Abstracts, 2018, , .	0.0	Ο
204	Vanadium Electrorefining in NaCl–KCl–VCl2 Melts. ECS Meeting Abstracts, 2018, , .	0.0	0
205	Kinetics of the Reduction of Rare Earth Metals in LiCl–KCl–Cscl Eutectic Melt. ECS Meeting Abstracts, 2018, , .	0.0	Ο
206	An Electrochemical Study of Divalent Ytterbium Species in NaCl–KCl and NaCl–KCl–Cscl Based Melts. ECS Meeting Abstracts, 2018, , .	0.0	0
207	The effect of temperature on IR-spectra of rubidium and cesium uranates. AIP Conference Proceedings, 2020, , .	0.4	Ο
208	Preface: The VII International Young Researchers' Conference – Physics, Technology, Innovations (PTI-2020). AIP Conference Proceedings, 2020, , .	0.4	0
209	Neodymium oxide solubility in molten salts based on alkali and alkali-earth halides. AIP Conference Proceedings, 2020, , .	0.4	Ο
210	Thermodynamics and the Separation Factor of Dy/U Couple on Ga and Ga–Al Electrodes in Fused LiCl–KCl Eutectic. ECS Meeting Abstracts, 2021, MA2021-02, 761-761.	0.0	0
211	Application of Phosphate Precipitation for Removing Strontium and Barium from Alkali Chloride Based Melts. ECS Transactions, 2020, 98, 283-294.	0.5	Ο
212	A Method of Producing Al–REE Master Alloys Using Exchange Reduction Reaction. ECS Transactions, 2020, 98, 271-281.	0.5	0
213	Solubility of Rare Earth Oxides in Fused Alkali and Alkaline Earth Halides. ECS Meeting Abstracts, 2020, MA2020-02, 2983-2983.	0.0	0
214	Separation of Uranium and Zirconium in Alkali Chloride Melts Using Liquid Metal Cathodes. ECS Meeting Abstracts, 2020, MA2020-02, 2941-2941.	0.0	0
215	Electrochemical Study of Dysprosium in Fused LiCl–KCl Eutectic for Production of High Purity Metal. ECS Meeting Abstracts, 2020, MA2020-02, 2982-2982.	0.0	0
216	Uranium Electrorefining in 3LiCl-2KCl Based Melts. ECS Meeting Abstracts, 2020, MA2020-02, 2972-2972.	0.0	0

#	Article	IF	CITATIONS
217	Corrosion of Ceramic and Carbon-Based Materials in FLiNaK. ECS Meeting Abstracts, 2020, MA2020-02, 2929-2929.	0.0	0
218	Application of Phosphate Precipitation for Removing Strontium and Barium from Alkali Chloride Based Melts. ECS Meeting Abstracts, 2020, MA2020-02, 2943-2943.	0.0	0
219	Corrosion of Metallic Materials in the Molten FLiNaK. ECS Meeting Abstracts, 2020, MA2020-02, 2973-2973.	0.0	0
220	Kinetics of Reaction of Oxygen with Uranium(IV) Chloride in Alkali Chloride Melts. ECS Meeting Abstracts, 2020, MA2020-02, 2942-2942.	0.0	0