Chunmei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306495/publications.pdf

Version: 2024-02-01

136740 253896 5,187 43 32 citations h-index papers

43 g-index 47 47 47 5427 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chemistry, 2014, 6, 1091-1099.	6.6	942
2	Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chemical Society Reviews, 2017, 46, 797-815.	18.7	862
3	Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie - International Edition, 2018, 57, 15002-15027.	7.2	551
4	Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. Journal of the American Chemical Society, 2018, 140, 9921-9933.	6.6	249
5	Lithium Azide as an Electrolyte Additive for Allâ€Solidâ€State Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 15368-15372.	7.2	213
6	Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li–S Cell. Journal of Physical Chemistry Letters, 2017, 8, 1956-1960.	2.1	166
7	Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. Joule, 2018, 2, 2208-2224.	11.7	15 3
8	Reviewâ€"Solid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges. Journal of the Electrochemical Society, 2018, 165, A6008-A6016.	1.3	146
9	From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie - International Edition, 2020, 59, 534-538.	7.2	124
10	Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. Joule, 2019, 3, 1689-1702.	11.7	108
11	Polymer-Rich Composite Electrolytes for All-Solid-State Li–S Cells. Journal of Physical Chemistry Letters, 2017, 8, 3473-3477.	2.1	106
12	A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental, 2013, 138-139, 175-183.	10.8	103
13	Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries. Journal of Power Sources, 2016, 329, 72-78.	4.0	97
14	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources, 2021, 502, 229919.	4.0	92
15	Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochimica Acta, 2018, 264, 367-375.	2.6	90
16	Estimation of energy density of Li-S batteries with liquid and solid electrolytes. Journal of Power Sources, 2016, 326, 1-5.	4.0	88
17	Sodium–Oxygen Battery: Steps Toward Reality. Journal of Physical Chemistry Letters, 2016, 7, 1161-1166.	2.1	86
18	Electrolyte and anodeâ€electrolyte interphase in solidâ€state lithium metal polymer batteries: A perspective. SusMat, 2021, 1, 24-37.	7.8	74

#	Article	IF	CITATIONS
19	Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives. Journal of Power Sources, 2019, 438, 226985.	4.0	73
20	Fluorineâ€Free Noble Salt Anion for Highâ€Performance Allâ€Solidâ€State Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900763.	10.2	66
21	Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Chemistry of Materials, 2021, 33, 8812-8821.	3.2	66
22	Polycondensation as a Versatile Synthetic Route to Aliphatic Polycarbonates for Solid Polymer Electrolytes. Electrochimica Acta, 2017, 237, 259-266.	2.6	60
23	Enhanced Lithiumâ€lon Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. Angewandte Chemie - International Edition, 2019, 58, 7829-7834.	7.2	59
24	Elektrolytadditive f $\tilde{A}\frac{1}{4}$ r Lithiummetallanoden und wiederaufladbare Lithiummetallbatterien: Fortschritte und Perspektiven. Angewandte Chemie, 2018, 130, 15220-15246.	1.6	54
25	Electrolyte Additives for Roomâ€√emperature, Sodiumâ€Based, Rechargeable Batteries. Chemistry - an Asian Journal, 2018, 13, 2770-2780.	1.7	53
26	Enhanced Lithiumâ€Ion Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. Angewandte Chemie, 2019, 131, 7911-7916.	1.6	51
27	UV-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium batteries. Electrochimica Acta, 2019, 302, 414-421.	2.6	50
28	Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis (fluorosulfonyl)imide. Solid State Ionics, 2018, 318, 95-101.	1.3	44
29	S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries. Journal of Power Sources, 2018, 390, 148-152.	4.0	43
30	Electronic Structure of Sodium Superoxide Bulk, (100) Surface, and Clusters using Hybrid Density Functional: Relevance for Na–O ₂ Batteries. Journal of Physical Chemistry Letters, 2015, 6, 2027-2031.	2.1	37
31	Singleâ€lon Conducting Poly(Ethylene Oxide Carbonate) as Solid Polymer Electrolyte for Lithium Batteries. Batteries and Supercaps, 2020, 3, 68-75.	2.4	37
32	Aprotic Li–O ₂ Battery: Influence of Complexing Agents on Oxygen Reduction in an Aprotic Solvent. Journal of Physical Chemistry C, 2014, 118, 3393-3401.	1.5	36
33	New Single Ion Conducting Blend Based on PEO and PA-LiTFSI. Electrochimica Acta, 2017, 255, 48-54.	2.6	33
34	Diagnosing the SEI Layer in a Potassium Ion Battery Using Distribution of Relaxation Time. Journal of Physical Chemistry Letters, 2021, 12, 2064-2071.	2.1	33
35	Understanding the Role of Nanoâ€Aluminum Oxide in Allâ€Solidâ€State Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 326-330.	1.7	28
36	From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie, 2020, 132, 542-546.	1.6	28

CHUNMEI LI

#	Article	IF	CITATIONS
37	Improvement of Lithium Metal Polymer Batteries through a Small Dose of Fluorinated Salt. Journal of Physical Chemistry Letters, 2020, 11, 6133-6138.	2.1	24
38	Salt Additives for Improving Cyclability of Polymer-Based All-Solid-State Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 4459-4464.	2.5	18
39	Lithium Azide as an Electrolyte Additive for Allâ€Solidâ€State Lithium–Sulfur Batteries. Angewandte Chemie, 2017, 129, 15570-15574.	1.6	12
40	Solid Electrolytes for Lithium Metal and Future Lithium-ion Batteries. , 2019, , 72-101.		7
41	Grapheneâ€based Activated Carbon Composites for High Performance Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
42	New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials. ChemSusChem, 2016, 9, 3206-3212.	3.6	5
43	A Highly Sensitive Electrochemical Sensor of Polysulfides in Polymer Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2020, 167, 080520.	1.3	1