

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306417/publications.pdf Version: 2024-02-01



YONG CU

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience, 2008, 11, 1201-1210.                                                                                  | 14.8 | 497       |
| 2  | Visual and Nonvisual Contributions to Three-Dimensional Heading Selectivity in the Medial Superior<br>Temporal Area. Journal of Neuroscience, 2006, 26, 73-85.                                | 3.6  | 271       |
| 3  | A functional link between area MSTd and heading perception based on vestibular signals. Nature<br>Neuroscience, 2007, 10, 1038-1047.                                                          | 14.8 | 269       |
| 4  | Perceptual Learning Reduces Interneuronal Correlations in Macaque Visual Cortex. Neuron, 2011, 71,<br>750-761.                                                                                | 8.1  | 199       |
| 5  | Multimodal Coding of Three-Dimensional Rotation and Translation in Area MSTd: Comparison of<br>Visual and Vestibular Selectivity. Journal of Neuroscience, 2007, 27, 9742-9756.               | 3.6  | 178       |
| 6  | Decoding of MSTd Population Activity Accounts for Variations in the Precision of Heading Perception.<br>Neuron, 2010, 66, 596-609.                                                            | 8.1  | 173       |
| 7  | Spatial Reference Frames of Visual, Vestibular, and Multimodal Heading Signals in the Dorsal<br>Subdivision of the Medial Superior Temporal Area. Journal of Neuroscience, 2007, 27, 700-712. | 3.6  | 120       |
| 8  | Causal Links between Dorsal Medial Superior Temporal Area Neurons and Multisensory Heading<br>Perception. Journal of Neuroscience, 2012, 32, 2299-2313.                                       | 3.6  | 116       |
| 9  | Evidence for a Causal Contribution of Macaque Vestibular, But Not Intraparietal, Cortex to Heading<br>Perception. Journal of Neuroscience, 2016, 36, 3789-3798.                               | 3.6  | 75        |
| 10 | Optogenetic fMRI interrogation of brain-wide central vestibular pathways. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10122-10129.            | 7.1  | 53        |
| 11 | Multisensory Convergence of Visual and Vestibular Heading Cues in the Pursuit Area of the Frontal<br>Eye Field. Cerebral Cortex, 2016, 26, 3785-3801.                                         | 2.9  | 50        |
| 12 | Neural Correlates of Optimal Multisensory Decision Making under Time-Varying Reliabilities with an<br>Invariant Linear Probabilistic Population Code. Neuron, 2019, 104, 1010-1021.e10.       | 8.1  | 41        |
| 13 | Contribution of correlated noise and selective decoding to choice probability measurements in extrastriate visual cortex. ELife, 2014, 3, .                                                   | 6.0  | 36        |
| 14 | Vestibular System and Self-Motion. Frontiers in Cellular Neuroscience, 2018, 12, 456.                                                                                                         | 3.7  | 32        |
| 15 | Vestibular signals in primate cortex for self-motion perception. Current Opinion in Neurobiology, 2018, 52, 10-17.                                                                            | 4.2  | 31        |
| 16 | Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. ELife, 2019, 8, .                                                                   | 6.0  | 31        |
| 17 | Probing Sensory Readout via Combined Choice-Correlation Measures and Microstimulation Perturbation. Neuron, 2018, 100, 715-727.e5.                                                            | 8.1  | 29        |
| 18 | Going with the Flow: The Neural Mechanisms Underlying Illusions of Complex-Flow Motion. Journal of Neuroscience, 2019, 39, 2664-2685.                                                         | 3.6  | 24        |

Yong Gu

3

| #  | Article                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Causal Evidence of Motion Signals in Macaque Middle Temporal Area Weighted-Pooled for Global<br>Heading Perception. Cerebral Cortex, 2018, 28, 612-624.   | 2.9 | 22        |
| 20 | Distinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd.<br>ELife, 2017, 6, .                                     | 6.0 | 20        |
| 21 | Oculomotor Performances Are Associated With Motor and Non-motor Symptoms in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 960.                    | 2.4 | 14        |
| 22 | Robust vestibular self-motion signals in macaque posterior cingulate region. ELife, 2021, 10, .                                                           | 6.0 | 13        |
| 23 | Temporal synchrony effects of optic flow and vestibular inputs on multisensory heading perception.<br>Cell Reports, 2021, 37, 109999.                     | 6.4 | 12        |
| 24 | Dynamic Network Communication in the Human Functional Connectome Predicts Perceptual<br>Variability in Visual Illusion. Cerebral Cortex, 2018, 28, 48-62. | 2.9 | 10        |
| 25 | Cortical Mechanisms of Multisensory Linear Self-motion Perception. Neuroscience Bulletin, 2023, 39, 125-137.                                              | 2.9 | 7         |
| 26 | Representation of illusory and physical rotations in human MST: A cortical site for the pinna illusion.<br>Human Brain Mapping, 2016, 37, 2097-2113.      | 3.6 | 6         |
| 27 | Distributed Representation of Curvilinear Self-Motion in the Macaque Parietal Cortex. Cell Reports, 2016, 15, 1013-1023.                                  | 6.4 | 5         |
|    |                                                                                                                                                           |     |           |

28 Multisensory Integration for Self-Motion Perception. , 2020, , 458-482.