Gianfranco Balboni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306273/publications.pdf

Version: 2024-02-01

123 papers 3,430 citations

32 h-index 206102 48 g-index

124 all docs

124 docs citations

times ranked

124

3103 citing authors

#	Article	IF	CITATIONS
1	Hydrogen Sulfide Increases the Analgesic Effects of µ- and δ-Opioid Receptors during Neuropathic Pain: Pathways Implicated. Antioxidants, 2022, 11, 1321.	5.1	7
2	Response to Perspectives on the Classical Enzyme Carbonic Anhydrase and the Search for Inhibitors. Biophysical Journal, 2021, 120, 178-181.	0.5	16
3	Evidence-Based View of Safety and Effectiveness of Prokineticin Receptors Antagonists during Pregnancy. Biomedicines, 2021, 9, 309.	3.2	6
4	Hair Growth Promotion by δ-Opioid Receptor Activation. Biomolecules and Therapeutics, 2021, 29, 643-649.	2.4	3
5	Differential inflammation-mediated function of prokineticin 2 in the synovial fibroblasts of patients with rheumatoid arthritis compared with osteoarthritis. Scientific Reports, 2021, 11, 18399.	3.3	7
6	The Antagonism of the Prokineticin System Counteracts Bortezomib Induced Side Effects: Focus on Mood Alterations. International Journal of Molecular Sciences, 2021, 22, 10256.	4.1	9
7	Hydrogen Sulfide Inhibits Inflammatory Pain and Enhances the Analgesic Properties of Delta Opioid Receptors. Antioxidants, 2021, 10, 1977.	5.1	11
8	Synthesis and evaluation of antioxidant and antiproliferative activity of 2-arylbenzimidazoles. Bioorganic Chemistry, 2020, 94, 103396.	4.1	28
9	Sulfonamide/sulfamate switch with a series of piperazinylureido derivatives: Synthesis, kinetic and in silico evaluation as carbonic anhydrase isoforms I, II, IV, and IX inhibitors. European Journal of Medicinal Chemistry, 2020, 186, 111896.	5.5	15
10	Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites, 2020, 10, 412.	2.9	116
11	Prokineticin 1–prokineticin receptor 1 signaling promotes angiogenesis in the porcine endometrium during pregnancyâ€. Biology of Reproduction, 2020, 103, 654-668.	2.7	13
12	Opposite Roles of δ- and μ-Opioid Receptors in BACE1 Regulation and Alzheimer's Injury. Frontiers in Cellular Neuroscience, 2020, 14, 88.	3.7	10
13	Appliance of the piperidinyl-hydrazidoureido linker to benzenesulfonamide compounds: Synthesis, in vitro and in silico evaluation of potent carbonic anhydrase II, IX and XII inhibitors. Bioorganic Chemistry, 2020, 98, 103728.	4.1	15
14	In-Vitro Evaluation of Antioxidant, Antiproliferative and Photo-Protective Activities of Benzimidazolehydrazone Derivatives. Pharmaceuticals, 2020, 13, 68.	3.8	12
15	Î'-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging, 2020, 12, 25035-25059.	3.1	9
16	Synthesis and inÂvitro evaluation of piperazinyl-ureido sulfamates as steroid sulfatase inhibitors. European Journal of Medicinal Chemistry, 2019, 182, 111614.	5.5	11
17	The prokineticin receptor antagonist PC1 rescues memory impairment induced by \hat{l}^2 amyloid administration through the modulation of prokineticin system. Neuropharmacology, 2019, 158, 107739.	4.1	18
18	Structure-activity relationship with pyrazoline-based aromatic sulfamates as carbonic anhydrase isoforms I, II, IX and XII inhibitors: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2019, 182, 111638.	5 . 5	24

#	Article	IF	CITATIONS
19	Prokineticin 2 promotes and sustains neuroinflammation in vincristine treated mice: Focus on pain and emotional like behavior. Brain, Behavior, and Immunity, 2019, 82, 422-431.	4.1	28
20	Targeting prokineticin system counteracts hypersensitivity, neuroinflammation, and tissue damage in a mouse model of bortezomib-induced peripheral neuropathy. Journal of Neuroinflammation, 2019, 16, 89.	7.2	32
21	Treatment With the Delta Opioid Agonist UFP-512 Alleviates Chronic Inflammatory and Neuropathic Pain: Mechanisms Implicated. Frontiers in Pharmacology, 2019, 10, 283.	3.5	27
22	Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorganic Chemistry, 2019, 85, 568-576.	4.1	83
23	Î-Opioid Receptor Activation Attenuates Hypoxia/MPP+-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Molecular Neurobiology, 2019, 56, 252-266.	4.0	13
24	Synthesis and biological evaluation of novel pyrazoline-based aromatic sulfamates with potent carbonic anhydrase isoforms II, IV and IX inhibitory efficacy. Bioorganic Chemistry, 2018, 77, 633-639.	4.1	25
25	Discovery of thiazolin-4-one-based aromatic sulfamates as a new class of carbonic anhydrase isoforms I, II, IV, and IX inhibitors. Bioorganic Chemistry, 2018, 77, 293-299.	4.1	27
26	Benzofuran hydrazones as potential scaffold in the development of multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity. European Journal of Medicinal Chemistry, 2018, 156, 118-125.	5. 5	40
27	Prokineticin system modulation as a new target to counteract the amyloid beta toxicity induced by glutamatergic alterations in an in \hat{A} vitro model of Alzheimer's disease. Neuropharmacology, 2017, 116, 82-97.	4.1	21
28	Antagonism of EG-VEGF Receptors as Targeted Therapy for Choriocarcinoma Progression <i>In Vitro</i> and <i>In Vivo</i> Clinical Cancer Research, 2017, 23, 7130-7140.	7.0	31
29	Design, Synthesis and Evaluation of Antiproliferative Activity of New Benzimidazolehydrazones. Molecules, 2016, 21, 579.	3.8	32
30	Prokineticins are neuroprotective in models of cerebral ischemia and ischemic tolerance inÂvitro. Neuropharmacology, 2016, 108, 39-48.	4.1	40
31	Attenuating Ischemic Disruption of K+ Homeostasis in the Cortex of Hypoxic-Ischemic Neonatal Rats: DOR Activation vs. Acupuncture Treatment. Molecular Neurobiology, 2016, 53, 7213-7227.	4.0	13
32	Antagonism of the Prokineticin System Prevents and Reverses Allodynia and Inflammation in a Mouse Model of Diabetes. PLoS ONE, 2016, 11, e0146259.	2.5	27
33	Bv8/prokineticin 2 is involved in A \hat{I}^2 -induced neurotoxicity. Scientific Reports, 2015, 5, 15301.	3.3	40
34	Prokineticin 2 Upregulation in the Peripheral Nervous System Has a Major Role in Triggering and Maintaining Neuropathic Pain in the Chronic Constriction Injury Model. BioMed Research International, 2015, 2015, 1-15.	1.9	32
35	Design, synthesis, and anti-HIV-1 activity of 1-substituted 3-(3,5-dimethylbenzyl)triazine derivatives. Antiviral Chemistry and Chemotherapy, 2015, 24, 62-71.	0.6	10
36	TRPV1 modulators: Synthesis and inÂvitro evaluation of 1-heteroaryl piperidinecarboxamide and piperazinylurea derivatives. European Journal of Medicinal Chemistry, 2015, 100, 129-138.	5 . 5	0

#	Article	IF	Citations
37	Synthesis and carbonic anhydrase I, II, IX and XII inhibitory activity of sulfamates incorporating piperazinyl-ureido moieties. Bioorganic and Medicinal Chemistry, 2015, 23, 5619-5625.	3.0	15
38	Synthesis of sulfonamides incorporating piperazinyl-ureido moieties and their carbonic anhydrase I, II, IX and XII inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3850-3853.	2.2	25
39	Inhibitory effect of positively charged triazine antagonists of prokineticin receptors on the transient receptor vanilloid type-1 (TRPV1) channel. Pharmacological Research, 2015, 99, 362-369.	7.1	6
40	A novel mechanism for cytoprotection against hypoxic injury: δâ€opioid receptorâ€mediated increase in <scp>N</scp> rf2 translocation. British Journal of Pharmacology, 2015, 172, 1869-1881.	5.4	34
41	Critical role for prokineticin 2 in CNS autoimmunity. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e95.	6.0	29
42	δâ€Opioid receptors upâ€regulate excitatory amino acid transporters in mouse astrocytes. British Journal of Pharmacology, 2014, 171, 5417-5430.	5.4	35
43	A new convenient synthetic method and preliminary pharmacological characterization of triazinediones as prokineticin receptor antagonists. European Journal of Medicinal Chemistry, 2014, 81, 334-340.	5.5	25
44	Interaction and reactivity of synthetic aminoisoflavones with metal-free and metal-associated amyloid- \hat{l}^2 . Chemical Science, 2014, 5, 4851-4862.	7.4	50
45	Synthesis, pharmacological evaluation and conformational investigation of endomorphin-2 hybrid analogues. Molecular Diversity, 2013, 17, 19-31.	3.9	10
46	Ligands Raise the Constraint That Limits Constitutive Activation in G Protein-coupled Opioid Receptors. Journal of Biological Chemistry, 2013, 288, 23964-23978.	3.4	22
47	Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorganic and Medicinal Chemistry, 2013, 21, 6592-6599.	3.0	42
48	Inhibitory properties of ibuprofen and its amide analogues towards the hydrolysis and cyclooxygenation of the endocannabinoid anandamide. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 172-182.	5.2	30
49	Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen. European Journal of Pharmacology, 2013, 720, 383-390.	3.5	30
50	Effect of δ-Opioid Receptor Activation on BDNF-TrkB vs. TNF-α in the Mouse Cortex Exposed to Prolonged Hypoxia. International Journal of Molecular Sciences, 2013, 14, 15959-15976.	4.1	34
51	Conformational Dynamics of Kir3.1/Kir3.2 Channel Activation Via $\langle i \rangle \hat{l}' \langle i \rangle$ -Opioid Receptors. Molecular Pharmacology, 2013, 83, 416-428.	2.3	45
52	Î-Opioid Receptor Activation Modified MicroRNA Expression in the Rat Kidney under Prolonged Hypoxia. PLoS ONE, 2013, 8, e61080.	2.5	15
53	Hydrogen Sulfide Induced Disruption of Na+ Homeostasis in the Cortex. Toxicological Sciences, 2012, 128, 198-208.	3.1	15
54	DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Experimental Neurology, 2012, 236, 228-239.	4.1	27

#	Article	IF	CITATIONS
55	Flavones and structurally related 4-chromenones inhibit carbonic anhydrases by a different mechanism of action compared to coumarins. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3063-3066.	2.2	25
56	Novel 2-amino-isoflavones exhibit aryl hydrocarbon receptor agonist or antagonist activity in a species/cell-specific context. Toxicology, 2012, 297, 26-33.	4.2	12
57	Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic. European Journal of Medicinal Chemistry, 2011, 46, 799-803.	5.5	12
58	Prokineticin Receptor 1 Antagonist PC-10 as a Biomarker for Imaging Inflammatory Pain. Journal of Nuclear Medicine, 2011, 52, 600-607.	5.0	6
59	Role of 2′,6′-dimethyl-l-tyrosine (Dmt) in some opioid lead compounds. Bioorganic and Medicinal Chemistry, 2010, 18, 6024-6030.	3.0	13
60	Synthesis and in vitro antitumor activity of new 4,5-dihydropyrazole derivatives. Bioorganic and Medicinal Chemistry, 2010, 18, 6238-6248.	3.0	69
61	Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1610-1613.	2.2	8
62	Evolution of the Bifunctional Lead μ Agonist∫Î Antagonist Containing the 2′,6′-Dimethyl-l-tyrosineâ'1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acid (Dmtâ'Tic) Opioid Pharmacophore. ACS Chemical Neuroscience, 2010, 1, 155-164.	3.5	39
63	Synthesis and Evaluation of Paracetamol Esters As Novel Fatty Acid Amide Hydrolase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 2286-2298.	6.4	24
64	The chemokine Bv8/prokineticin 2 is up-regulated in inflammatory granulocytes and modulates inflammatory pain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14646-14651.	7.1	85
65	Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent µ-ſĨ-opioid receptor antagonist, regulates obese-related factors in mice. European Journal of Pharmacology, 2009, 616, 115-121.	3.5	18
66	Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl)pyridines. Bioorganic and Medicinal Chemistry, 2009, 17, 6158-6165.	3.0	75
67	Î-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cellular and Molecular Life Sciences, 2009, 66, 3505-3516.	5.4	41
68	Conformationally constrained opioid ligands: The Dmt-Aba and Dmt-Aia versus Dmt-Tic scaffold. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 433-437.	2.2	22
69	Influence of the Side Chain Next to C-Terminal Benzimidazole in Opioid Pseudopeptides Containing the Dmt-Tic Pharmacophore. Journal of Medicinal Chemistry, 2009, 52, 5556-5559.	6.4	12
70	Role of benzimidazole (Bid) in the δ-opioid agonist pseudopeptide H-Dmt-Tic-NH-CH2-Bid (UFP-502)☆. Bioorganic and Medicinal Chemistry, 2008, 16, 3032-3038.	3.0	11
71	Inhibition of the development of morphine tolerance by a potent dual ξ-/Ĵ´-opioid antagonist, H-Dmt-Tic-Lys-NH-CH2-Ph. Pharmacology Biochemistry and Behavior, 2008, 90, 651-657.	2.9	10
72	Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides, 2008, 29, 93-103.	2.4	75

#	Article	IF	CITATIONS
73	Synthesis of a Potent and Selective $\langle \sup 18 \langle \sup F$ -Labeled δ-Opioid Receptor Antagonist Derived from the Dmt-Tic Pharmacophore for Positron Emission Tomography Imaging. Journal of Medicinal Chemistry, 2008, 51, 1817-1823.	6.4	9
74	Further Studies on Lead Compounds Containing the Opioid Pharmacophore Dmt-Tic. Journal of Medicinal Chemistry, 2008, 51, 5109-5117.	6.4	22
75	Triazine Compounds as Antagonists at Bv8-Prokineticin Receptors. Journal of Medicinal Chemistry, 2008, 51, 7635-7639.	6.4	55
76	Activation of DOR Attenuates Anoxic K+ Derangement via Inhibition of Na+ Entry in Mouse Cortex. Cerebral Cortex, 2008, 18, 2217-2227.	2.9	53
77	Ĩ-, but not Âμ-, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. Journal of Cellular Physiology, 2007, 212, 60-67.	4.1	80
78	Further studies on the effect of lysine at the C-terminus of the Dmt-Tic opioid pharmacophore. Bioorganic and Medicinal Chemistry, 2007, 15, 3143-3151.	3.0	7
79	A new opioid designed multiple ligand derived from the $\hat{l}\frac{1}{4}$ opioid agonist endomorphin-2 and the \hat{l} opioid antagonist pharmacophore Dmt-Tic. Bioorganic and Medicinal Chemistry, 2007, 15, 6876-6881.	3.0	24
80	New 2â€~,6â€~-Dimethyl-l-tyrosine (Dmt) Opioid Peptidomimetics Based on the Aba-Gly Scaffold. Development of Unique μ-Opioid Receptor Ligands. Journal of Medicinal Chemistry, 2006, 49, 3990-3993.	6.4	13
81	6-N,N-Dimethylamino-2,3-naphthalimide:Â A New Environment-Sensitive Fluorescent Probe in \hat{l} - and \hat{l} -/4-Selective Opioid Peptides. Journal of Medicinal Chemistry, 2006, 49, 3653-3658.	6.4	48
82	Effect of Lysine at C-Terminus of the Dmt-Tic Opioid Pharmacophore. Journal of Medicinal Chemistry, 2006, 49, 5610-5617.	6.4	25
83	New Opioid Designed Multiple Ligand from Dmt-Tic and Morphinan Pharmacophores. Journal of Medicinal Chemistry, 2006, 49, 5640-5643.	6.4	29
84	Dmt-Tic-NH-CH2-Bid (UFP-502), a potent DOP receptor agonist: In vitro and in vivo studies. Peptides, 2006, 27, 3322-3330.	2.4	18
85	Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. Brain Research, 2006, 1069, 172-181.	2.2	87
86	From the Potent and Selective ν Opioid Receptor Agonist H-Dmt-d-Arg-Phe-Lys-NH2to the Potent δ Antagonist H-Dmt-Tic-Phe-Lys(Z)-OH. Journal of Medicinal Chemistry, 2005, 48, 5608-5611.	6.4	7
87	Conversion of the Potent δ-Opioid Agonist H-Dmt-Tic-NH-CH2-Bid into δ-Opioid Antagonists by N-Benzimidazole Alkylation1. Journal of Medicinal Chemistry, 2005, 48, 8112-8114.	6.4	15
88	Direct Influence of C-Terminally Substituted Amino Acids in the Dmtâ^Tic Pharmacophore on Î-Opioid Receptor Selectivity and Antagonism. Journal of Medicinal Chemistry, 2004, 47, 4066-4071.	6.4	19
89	Highly Selective Fluorescent Analogue of the Potent Î-Opioid Receptor Antagonist Dmt-Tic. Journal of Medicinal Chemistry, 2004, 47, 6541-6546.	6.4	26
90	Synthesis and opioid activity of N,N-Dimethyl-Dmt-Tic-NH-CH(R)-Râ \in 2 analogues: acquisition of potent \hat{l}' antagonism. Bioorganic and Medicinal Chemistry, 2003, 11, 5435-5441.	3.0	19

#	Article	IF	Citations
91	Evaluation of the Dmtâ^'Tic Pharmacophore:Â Conversion of a Potent Î-Opioid Receptor Antagonist into a Potent Î Agonist and Ligands with Mixed Properties. Journal of Medicinal Chemistry, 2002, 45, 713-720.	6.4	93
92	Potent Î'-Opioid Receptor Agonists Containing the Dmtâ'Tic Pharmacophore. Journal of Medicinal Chemistry, 2002, 45, 5556-5563.	6.4	85
93	Crystal Structures of Dipeptides Containing the Dmt-Tic Pharmacophore. Journal of Medicinal Chemistry, 2002, 45, 5506-5513.	6.4	14
94	Generation of New Dint-Tic δOpioid Antagonists: N-Alkylation. , 2002, , 603-604.		0
95	Inhibition of human multidrug resistance P-glycoprotein 1 by analogues of a potent \hat{l} -opioid antagonist. Brain Research, 2001, 902, 131-134.	2.2	11
96	Computational Chemistry and Opioidmimetics: Receptor-Ligand Interactions of Dmt-Tic Peptides. , 2001, , 851-852.		0
97	Characterization of N,N(Me)2-Dmt-Tic-OH, a delta selective opioid dipeptide antagonist. NeuroReport, 2000, 11, 2083-2086.	1.2	2
98	Assessment of substitution in the second pharmacophore of Dmt-Tic analogues. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2745-2748.	2.2	22
99	Synthesis and activity of 3-pyridylamine ligands at central nicotinic receptors. European Journal of Medicinal Chemistry, 2000, 35, 979-988.	5. 5	31
100	Inverse agonism by Dmt–Tic analogues and HS 378, a naltrindole analogue. European Journal of Pharmacology, 2000, 406, R1-R3.	3.5	28
101	Opioid pseudopeptides containing heteroaromatic or heteroaliphatic nuclei. Peptides, 2000, 21, 1663-1671.	2.4	24
102	Further Studies on the Dmt-Tic Pharmacophore:Â Hydrophobic Substituents at the C-Terminus Endow \hat{l}' Antagonists To Manifest \hat{l}' 4 Agonism or \hat{l}' 4 Antagonism. Journal of Medicinal Chemistry, 1999, 42, 5010-5019.	6.4	71
103	Design of $\hat{\Gamma}$ -opioid peptide antagonists for emerging drug applications. Drug Discovery Today, 1998, 3, 284-294.	6.4	40
104	Ultraselective antagonists of the d-opioid receptor. Expert Opinion on Therapeutic Targets, 1998, 2, 45-47.	1.0	0
105	Opioid Diketopiperazines: Refinement of the $\hat{\Gamma}$ Opioid Antagonist Pharmacophore. Biological Chemistry, 1997, 378, 107-114.	2.5	29
106	Opioid Diketopiperazines: Synthesis and Activity of a Prototypic Class of Opioid Antagonists. Biological Chemistry, 1997, 378, 19-29.	2.5	41
107	Evolution of the Dmt-Tic Pharmacophore: N-Terminal Methylated Derivatives with Extraordinary δ Opioid Antagonist Activity. Journal of Medicinal Chemistry, 1997, 40, 3100-3108.	6.4	85
108	Synthesis and Pharmacological Activity of Deltorphin and Dermorphin-Related Glycopeptides. Journal of Medicinal Chemistry, 1997, 40, 2948-2952.	6.4	58

#	Article	IF	CITATIONS
109	Design and Solution Structure of a Partially Rigid Opioid Antagonist Lacking the Basic Center - Models of Antagonism. FEBS Journal, 1997, 247, 66-73.	0.2	24
110	Dmt-Tic-OH, a highly selective and potent Î-opioid dipeptide receptor antagonist after systemic administration in the mouse. Life Sciences, 1996, 59, PL93-PL98.	4.3	23
111	Acid catalysis in the formation of dioxopiperazines from peptides containing tetrahydroisoquinolineâ€3 arboxylic acid at position 2. International Journal of Peptide and Protein Research, 1995, 45, 567-573.	0.1	21
112	Phe3-substituted analogs of deltorphin C. Spatial conformation and topography of the aromatic ring in peptide recognition by .delta. opioid receptors. Journal of Medicinal Chemistry, 1993, 36, 3748-3756.	6.4	46
113	Stereospecificity of amino acid side chains in deltorphin defines binding to opioid receptors. Journal of Medicinal Chemistry, 1992, 35, 1222-1227.	6.4	39
114	Synthesis and structure-activity relationships of deltorphins analogs. Journal of Medicinal Chemistry, 1991, 34, 1656-1661.	6.4	38
115	Synthesis of 2-Amino-5-pyrimidinecarbonitrile Derivatives. Synthesis, 1991, 1991, 529-530.	2.3	21
116	Opioid peptides Synthesis and binding properties of dermorphin related heptapeptides. International Journal of Peptide and Protein Research, 1989, 33, 94-102.	0.1	3
117	Synthesis and activity profiles of new dermorphin-(1-4) peptide analogs. Journal of Medicinal Chemistry, 1987, 30, 1538-1542.	6.4	30
118	Dehydroâ€dermorphins. International Journal of Peptide and Protein Research, 1986, 28, 254-261.	0.1	21
119	Dehydroâ€dermorphins. International Journal of Peptide and Protein Research, 1986, 28, 262-273.	0.1	22
120	Synthesis and biological activity of carboxyl terminally extended dermorphins. International Journal of Peptide and Protein Research, 1986, 28, 274-281.	0.1	6
121	Synthesis and pharmacological activity of partially modified retro-inverso dermorphin tetrapeptides. Journal of Medicinal Chemistry, 1985, 28, 769-774.	6.4	27
122	Synthesis and opioid activity of partial retroâ€inverso analogs of dermorphin. International Journal of Peptide and Protein Research, 1985, 25, 526-533.	0.1	19
123	A Critical Role of $\hat{\Gamma}$ -Opioid Receptor in Anti-microglial Activation Under Stress. Frontiers in Aging Neuroscience, 0, 14, .	3.4	3