Heike Wulff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306259/publications.pdf Version: 2024-02-01

Ηεικε \λ/ιιιεε

#	Article	IF	CITATIONS
1	Voltage-gated potassium channels as therapeutic targets. Nature Reviews Drug Discovery, 2009, 8, 982-1001.	46.4	644
2	Ion Channels in Innate and Adaptive Immunity. Annual Review of Immunology, 2015, 33, 291-353.	21.8	541
3	International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. Pharmacological Reviews, 2005, 57, 463-472.	16.0	540
4	Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17414-17419.	7.1	470
5	K+ channels as targets for specific immunomodulation. Trends in Pharmacological Sciences, 2004, 25, 280-289.	8.7	404
6	The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. Journal of Clinical Investigation, 2003, 111, 1703-1713.	8.2	368
7	International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels. Pharmacological Reviews, 2003, 55, 583-586.	16.0	358
8	Up-regulation of the IKCa1 Potassium Channel during T-cell Activation. Journal of Biological Chemistry, 2000, 275, 37137-37149.	3.4	357
9	Amyloid-β Protein Oligomer at Low Nanomolar Concentrations Activates Microglia and Induces Microglial Neurotoxicity. Journal of Biological Chemistry, 2011, 286, 3693-3706.	3.4	234
10	Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases. Molecular Pharmacology, 2005, 67, 1369-1381.	2.3	232
11	A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature, 2021, 589, 474-479.	27.8	221
12	Blockade of the Intermediate-Conductance Calcium-Activated Potassium Channel as a New Therapeutic Strategy for Restenosis. Circulation, 2003, 108, 1119-1125.	1.6	217
13	Genetic Deficit of SK3 and IK1 Channels Disrupts the Endothelium-Derived Hyperpolarizing Factor Vasodilator Pathway and Causes Hypertension. Circulation, 2009, 119, 2323-2332.	1.6	215
14	Molecular properties and physiological roles of ion channels in the immune system. Journal of Clinical Immunology, 2001, 21, 235-252.	3.8	212
15	Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon, 2012, 59, 529-546.	1.6	203
16	K ⁺ Channel Modulators for the Treatment of Neurological Disorders and Autoimmune Diseases. Chemical Reviews, 2008, 108, 1744-1773.	47.7	196
17	The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. Journal of Clinical Investigation, 2008, 118, 3025-3037.	8.2	193
18	Design of PAP-1, a Selective Small Molecule Kv1.3 Blocker, for the Suppression of Effector Memory T Cells in Autoimmune Diseases. Molecular Pharmacology, 2005, 68, 1254-1270.	2.3	190

Heike Wulff

#	Article	IF	CITATIONS
19	Early Changes in Cerebellar Physiology Accompany Motor Dysfunction in the Polyglutamine Disease Spinocerebellar Ataxia Type 3. Journal of Neuroscience, 2011, 31, 13002-13014.	3.6	190
20	Modulators of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels and their Therapeutic Indications. Current Medicinal Chemistry, 2007, 14, 1437-1457.	2.4	189
21	Naphtho[1,2- <i>d</i>]thiazol-2-ylamine (SKA-31), a New Activator of KCa2 and KCa3.1 Potassium Channels, Potentiates the Endothelium-Derived Hyperpolarizing Factor Response and Lowers Blood Pressure. Molecular Pharmacology, 2009, 75, 281-295.	2.3	188
22	K+ Channel Expression during B Cell Differentiation: Implications for Immunomodulation and Autoimmunity. Journal of Immunology, 2004, 173, 776-786.	0.8	175
23	The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11094-11099.	7.1	172
24	Therapeutic potential of K _{Ca} 3.1 blockers: recent advances and promising trends. Expert Review of Clinical Pharmacology, 2010, 3, 385-396.	3.1	172
25	Calcium-activated Potassium Channels Sustain Calcium Signaling in T Lymphocytes. Journal of Biological Chemistry, 2001, 276, 12249-12256.	3.4	155
26	Renal fibrosis is attenuated by targeted disruption of K _{Ca} 3.1 potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14518-14523.	7.1	140
27	Inhibition of the K ⁺ channel KCa3.1 ameliorates T cell–mediated colitis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1541-1546.	7.1	136
28	Delineation of the Clotrimazole/TRAM-34 Binding Site on the Intermediate Conductance Calcium-activated Potassium Channel, IKCa1. Journal of Biological Chemistry, 2001, 276, 32040-32045.	3.4	128
29	Kv1.3-Blocking 5-Phenylalkoxypsoralens: A New Class of Immunomodulators. Molecular Pharmacology, 2004, 65, 1364-1374.	2.3	126
30	Differential Kv1.3, KCa3.1, and Kir2.1 expression in "classically―and "alternatively―activated microglia. Glia, 2017, 65, 106-121.	4.9	122
31	Antibodies and venom peptides: new modalities for ion channels. Nature Reviews Drug Discovery, 2019, 18, 339-357.	46.4	119
32	Design and Characterization of a Highly Selective Peptide Inhibitor of the Small Conductance Calcium-activated K+Channel, SkCa2. Journal of Biological Chemistry, 2001, 276, 43145-43151.	3.4	106
33	K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochemical Journal, 2005, 385, 95-104.	3.7	103
34	Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the K ⁺ channel KCa3.1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14442-14446.	7.1	102
35	Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability. Journal of Neuroscience, 2015, 35, 11292-11307.	3.6	93
36	The KCa3.1 Blocker TRAM-34 Reduces Infarction and Neurological Deficit in a Rat Model of Ischemia/Reperfusion Stroke. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2363-2374.	4.3	92

#	Article	IF	CITATIONS
37	Modulation of Mouse Paneth Cell α-Defensin Secretion by mIKCa1, a Ca2+-activated, Intermediate Conductance Potassium Channel. Journal of Biological Chemistry, 2002, 277, 3793-3800.	3.4	90
38	Targeting Effector Memory T Cells with the Small Molecule Kv1.3 Blocker PAP-1 Suppresses Allergic Contact Dermatitis. Journal of Investigative Dermatology, 2007, 127, 1419-1429.	0.7	89
39	The lymphocyte potassium channels Kv1.3 and KCa3.1 as targets for immunosuppression. Drug Development Research, 2011, 72, 573-584.	2.9	88
40	Endothelial Small-Conductance and Intermediate-Conductance KCa Channels. Journal of Cardiovascular Pharmacology, 2013, 61, 102-112.	1.9	88
41	International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacological Reviews, 2017, 69, 1-11.	16.0	85
42	The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2146-2161.	4.3	84
43	Vascular K _{Ca} -channels as therapeutic targets in hypertension and restenosis disease. Expert Opinion on Therapeutic Targets, 2010, 14, 143-155.	3.4	83
44	Optimized Inhibitors of Soluble Epoxide Hydrolase Improve in Vitro Target Residence Time and in Vivo Efficacy. Journal of Medicinal Chemistry, 2014, 57, 7016-7030.	6.4	81
45	A Novel Fluorescent Toxin to Detect and Investigate Kv1.3 Channel Up-regulation in Chronically Activated T Lymphocytes. Journal of Biological Chemistry, 2003, 278, 9928-9937.	3.4	80
46	Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept. Brain, 2018, 141, 596-612.	7.6	79
47	Potassium Channel Blockade by the Sea Anemone Toxin ShK for the Treatment of Multiple Sclerosis and Other Autoimmune Diseases. Current Medicinal Chemistry, 2004, 11, 3041-3052.	2.4	77
48	AMA production in primary biliary cirrhosis is promoted by the TLR9 ligand CpG and suppressed by potassium channel blockers. Hepatology, 2007, 45, 314-322.	7.3	76
49	Kv1.3 channelâ€blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases. FASEB Journal, 2014, 28, 3952-3964.	0.5	76
50	The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling. Journal of Biological Chemistry, 2013, 288, 15843-15853.	3.4	74
51	KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease. Kidney International, 2008, 74, 740-749.	5.2	71
52	Dysregulation of Glutamine Transporter SNAT1 in Rett Syndrome Microglia: A Mechanism for Mitochondrial Dysfunction and Neurotoxicity. Journal of Neuroscience, 2015, 35, 2516-2529.	3.6	71
53	The voltageâ€gated potassium channel Kv1.3 is required for microglial proâ€inflammatory activation <i>in vivo</i> . Glia, 2018, 66, 1881-1895.	4.9	69
54	Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels. Annual Review of Pharmacology and Toxicology, 2020, 60, 219-240.	9.4	69

#	Article	IF	CITATIONS
55	The K ⁺ channels K _{Ca} 3.1 and K _v 1.3 as novel targets for asthma therapy. British Journal of Pharmacology, 2009, 157, 1330-1339.	5.4	67
56	Potassium channels in T lymphocytes: toxins to therapeutic immunosuppressants. Toxicon, 2001, 39, 1269-1276.	1.6	66
57	Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich's ataxia. Human Molecular Genetics, 2014, 23, 6848-6862.	2.9	66
58	Pharmacological activation of KCa3.1/KCa2.3 channels produces endothelial hyperpolarization and lowers blood pressure in conscious dogs. British Journal of Pharmacology, 2012, 165, 223-234.	5.4	60
59	Potassium channels as therapeutic targets for autoimmune disorders. Current Opinion in Drug Discovery & Development, 2003, 6, 640-7.	1.9	60
60	Kv1.3 in psoriatic disease: PAP-1, a small molecule inhibitor of Kv1.3 is effective in the SCID mouse psoriasis – Xenograft model. Journal of Autoimmunity, 2014, 55, 63-72.	6.5	58
61	The combined activation of KCa3.1 and inhibition of Kv11.1/hERG1 currents contribute to overcome Cisplatin resistance in colorectal cancer cells. British Journal of Cancer, 2018, 118, 200-212.	6.4	58
62	Blood–Brain Barrier KCa3.1 Channels. Stroke, 2015, 46, 237-244.	2.0	57
63	Khellinone Derivatives as Blockers of the Voltage-Gated Potassium Channel Kv1.3:  Synthesis and Immunosuppressive Activity. Journal of Medicinal Chemistry, 2004, 47, 2326-2336.	6.4	56
64	Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer's Disease. International Journal of Alzheimer's Disease, 2012, 2012, 1-8.	2.0	53
65	Pharmacological gating modulation of small- and intermediate-conductance Ca ²⁺ -activated K ⁺ channels (K _{Ca} 2.x and K _{Ca} 3.1). Channels, 2015, 9, 336-343.	2.8	52
66	Alkoxypsoralens, Novel Nonpeptide Blockers ofShaker-Type K+Channels:Â Synthesis and Photoreactivity. Journal of Medicinal Chemistry, 1998, 41, 4542-4549.	6.4	51
67	New Positive Ca ²⁺ -Activated K ⁺ Channel Gating Modulators with Selectivity for K _{Ca} 3.1. Molecular Pharmacology, 2014, 86, 342-357.	2.3	50
68	Targeting potassium channels to treat cerebellar ataxia. Annals of Clinical and Translational Neurology, 2018, 5, 297-314.	3.7	50
69	Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. Journal of Clinical Investigation, 2020, 130, 4195-4212.	8.2	50
70	Genetic KCa3.1-Deficiency Produces Locomotor Hyperactivity and Alterations in Cerebral Monoamine Levels. PLoS ONE, 2012, 7, e47744.	2.5	49
71	4-Phenoxybutoxy-substituted heterocycles – A structure–activity relationship study of blockers of the lymphocyte potassium channel Kv1.3. European Journal of Medicinal Chemistry, 2009, 44, 1838-1852.	5.5	48
72	Negative Gating Modulation by (R)-N-(Benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) Depends on Residues in the Inner Pore Vestibule: Pharmacological Evidence of Deep-Pore Gating of KCa2 Channels. Molecular Pharmacology, 2011, 79, 899-909.	2.3	48

#	Article	IF	CITATIONS
73	Expression of T-cell KV1.3 potassium channel correlates with pro-inflammatory cytokines and disease activity in ulcerative colitis. Journal of Crohn's and Colitis, 2014, 8, 1378-1391.	1.3	45
74	Repurposing the KCa3.1 inhibitor senicapoc for Alzheimer's disease. Annals of Clinical and Translational Neurology, 2019, 6, 723-738.	3.7	45
75	Blocking KCa3.1 Channels Increases Tumor Cell Killing by a Subpopulation of Human Natural Killer Lymphocytes. PLoS ONE, 2013, 8, e76740.	2.5	45
76	Potassium channel expression and function in microglia: Plasticity and possible species variations. Channels, 2017, 11, 305-315.	2.8	44
77	KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment. Oncotarget, 2016, 7, 30781-30796.	1.8	44
78	Does microglial dysfunction play a role in autism and Rett syndrome?. Neuron Glia Biology, 2011, 7, 85-97.	1.6	43
79	Activation of <scp>K_{Ca}</scp> 3.1 by <scp>SKA</scp> â€31 induces arteriolar dilatation and lowers blood pressure in normo―and hypertensive connexin40â€deficient mice. British Journal of Pharmacology, 2013, 170, 293-303.	5.4	43
80	The K+ Channel KCa3.1 as a Novel Target for Idiopathic Pulmonary Fibrosis. PLoS ONE, 2013, 8, e85244.	2.5	43
81	Biophysical basis for Kv1.3 regulation of membrane potential changes induced by <scp>P2X4</scp> â€mediated calcium entry in microglia. Glia, 2020, 68, 2377-2394.	4.9	43
82	The therapeutic potential of small-conductance KCa2 channels in neurodegenerative and psychiatric diseases. Expert Opinion on Therapeutic Targets, 2013, 17, 1203-1220.	3.4	42
83	Nanomolar Bifenthrin Alters Synchronous Ca ²⁺ Oscillations and Cortical Neuron Development Independent of Sodium Channel Activity. Molecular Pharmacology, 2014, 85, 630-639.	2.3	41
84	Human lung myofibroblast TGFβ1-dependent Smad2/3 signalling is Ca2+-dependent and regulated by KCa3.1 K+ channels. Fibrogenesis and Tissue Repair, 2015, 8, 5.	3.4	40
85	Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore. Molecular Pharmacology, 2017, 91, 392-402.	2.3	39
86	Inhibition of the potassium channel Kv1.3 reduces infarction and inflammation in ischemic stroke. Annals of Clinical and Translational Neurology, 2018, 5, 147-161.	3.7	39
87	Pharmacological Profiling of Orthochirus scrobiculosus Toxin 1 Analogs with a Trimmed N-Terminal Domain. Molecular Pharmacology, 2006, 69, 354-362.	2.3	38
88	Susceptibility of larval zebrafish to the seizurogenic activity of GABA type A receptor antagonists. NeuroToxicology, 2020, 76, 220-234.	3.0	35
89	Diisopropylfluorophosphate Impairs the Transport of Membrane-Bound Organelles in Rat Cortical Axons. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 645-655.	2.5	34
90	Suppression of connexin 43 phosphorylation promotes astrocyte survival and vascular regeneration in proliferative retinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5934-E5943.	7.1	34

#	Article	IF	CITATIONS
91	The Riluzole Derivative 2-Amino-6-trifluoromethylthio-benzothiazole (SKA-19), a Mixed KCa2 Activator and NaV Blocker, is a Potent Novel Anticonvulsant. Neurotherapeutics, 2015, 12, 234-249.	4.4	33
92	Characterisation of the human voltage-gated potassium channel gene, KCNA7, a candidate gene for inherited cardiac disorders, and its exclusion as cause of progressive familial heart block I (PFHBI). European Journal of Human Genetics, 2002, 10, 36-43.	2.8	32
93	Purification, molecular cloning and functional characterization of HelaTx1 (Heterometrus laoticus): The first member of a new Ϊ-KTX subfamily. Biochemical Pharmacology, 2012, 83, 1307-1317.	4.4	32
94	KCa3.1 Channel Modulators as Potential Therapeutic Compounds for Glioblastoma. Current Neuropharmacology, 2018, 16, 618-626.	2.9	31
95	Ca ²⁺ -Activated K ⁺ Channel–3.1 Blocker TRAM-34 Attenuates Airway Remodeling and Eosinophilia in a Murine Asthma Model. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 212-219.	2.9	30
96	Targeting effector memory T-cells with Kv1.3 blockers. Current Opinion in Drug Discovery & Development, 2007, 10, 438-45.	1.9	30
97	Potassium Channel Block by a Tripartite Complex of Two Cationophilic Ligands and a Potassium Ion. Molecular Pharmacology, 2010, 78, 588-599.	2.3	29
98	SKA-31, a novel activator of SKCa and IKCa channels, increases coronary flow in male and female rat hearts. Cardiovascular Research, 2013, 97, 339-348.	3.8	29
99	Rapid Throughput Analysis Demonstrates that Chemicals with Distinct Seizurogenic Mechanisms Differentially Alter Ca ²⁺ Dynamics in Networks Formed by Hippocampal Neurons in Culture. Molecular Pharmacology, 2015, 87, 595-605.	2.3	29
100	A New Class of Blockers of the Voltage-Gated Potassium Channel Kv1.3 via Modification of the 4- or 7-Position of Khellinone. Journal of Medicinal Chemistry, 2006, 49, 1433-1441.	6.4	28
101	KCa3.1 Channel-Blockade Attenuates Airway Pathophysiology in a Sheep Model of Chronic Asthma. PLoS ONE, 2013, 8, e66886.	2.5	28
102	Novel Phenolic Inhibitors of Small/Intermediate-Conductance Ca2+-Activated K+ Channels, KCa3.1 and KCa2.3. PLoS ONE, 2013, 8, e58614.	2.5	25
103	Interrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling. Scientific Reports, 2015, 5, 14077.	3.3	25
104	Unique molecular characteristics and microglial origin of Kv1.3 channel–positive brain myeloid cells in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
105	A pharmacologic activator of endothelial KCa channels enhances coronary flow in the hearts of type 2 diabetic rats. Journal of Molecular and Cellular Cardiology, 2014, 72, 364-373.	1.9	24
106	Models to identify treatments for the acute and persistent effects of seizureâ€inducing chemical threat agents. Annals of the New York Academy of Sciences, 2016, 1378, 124-136.	3.8	24
107	Blocking Kv1.3 potassium channels prevents postoperative neuroinflammation and cognitive decline without impairing wound healing in mice. British Journal of Anaesthesia, 2020, 125, 298-307.	3.4	24
108	Structural insights into the potency of SK channel positive modulators. Scientific Reports, 2017, 7, 17178.	3.3	22

#	Article	IF	CITATIONS
109	Acute administration of diazepam or midazolam minimally alters long-term neuropathological effects in the rat brain following acute intoxication with diisopropylfluorophosphate. European Journal of Pharmacology, 2020, 886, 173538.	3.5	21
110	New Light on the "Old―Chloride Channel Blocker DIDS. ACS Chemical Biology, 2008, 3, 399-401.	3.4	20
111	Alterations in cerebellar physiology are associated with a stiff-legged gait in Atcayji-hes mice. Neurobiology of Disease, 2014, 67, 140-148.	4.4	20
112	The Potassium Channel KCa3.1 as New Therapeutic Target for the Prevention of Obliterative Airway Disease. Transplantation, 2013, 95, 285-292.	1.0	19
113	Inhibition of Myogenic Tone in Rat Cremaster and Cerebral Arteries by SKA-31, an Activator of Endothelial KCa2.3 and KCa3.1 Channels. Journal of Cardiovascular Pharmacology, 2015, 66, 118-127.	1.9	19
114	A Novel Pan-Negative-Gating Modulator of K _{Ca} 2/3 Channels, Fluoro-Di-Benzoate, RA-2, Inhibits Endothelium-Derived Hyperpolarization–Type Relaxation in Coronary Artery and Produces Bradycardia In Vivo. Molecular Pharmacology, 2015, 87, 338-348.	2.3	19
115	Kv1.3 activity perturbs the homeostatic properties of astrocytes in glioma. Scientific Reports, 2018, 8, 7654.	3.3	19
116	The Ca2+-Activated K+ Channel KCa3.1 as a Potential New Target for the Prevention of Allograft Vasculopathy. PLoS ONE, 2013, 8, e81006.	2.5	18
117	BDE-47 and BDE-49 Inhibit Axonal Growth in Primary Rat Hippocampal Neuron-Glia Co-Cultures via Ryanodine Receptor-Dependent Mechanisms. Toxicological Sciences, 2017, 156, kfw259.	3.1	18
118	Treatment with the KCa3.1 inhibitor TRAM-34 during diabetic ketoacidosis reduces inflammatory changes in the brain. Pediatric Diabetes, 2017, 18, 356-366.	2.9	18
119	Rapid Throughput Analysis of GABA _A Receptor Subtype Modulators and Blockers Using DiSBAC ₁ (3) Membrane Potential Red Dye. Molecular Pharmacology, 2017, 92, 88-99.	2.3	18
120	Hydroxy-fipronil is a new urinary biomarker of exposure to fipronil. Environment International, 2017, 103, 91-98.	10.0	18
121	Ca2+-activated K+ channels modulate microglia affecting motor neuron survival in hSOD1G93A mice. Brain, Behavior, and Immunity, 2018, 73, 584-595.	4.1	18
122	Modulation of Lymphocyte Potassium Channel K _V 1.3 by Membrane-Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacology and Translational Science, 2020, 3, 720-736.	4.9	18
123	Development of Tetramethylenedisulfotetramine (TETS) Hapten Library: Synthesis, Electrophysiological Studies, and Immune Response in Rabbits Chemistry - A European Journal, 2017, 23, 8466-8472.	3.3	17
124	A multi-tiered, in vivo, quantitative assay suite for environmental disruptors of thyroid hormone signaling. Aquatic Toxicology, 2017, 190, 1-10.	4.0	17
125	Extracellular K ⁺ Dampens T Cell Functions: Implications for Immune Suppression in the Tumor Microenvironment. Bioelectricity, 2019, 1, 169-179.	1.1	17
126	Radiation Increases Functional KCa3.1 Expression and Invasiveness in Glioblastoma. Cancers, 2019, 11, 279.	3.7	17

#	Article	IF	CITATIONS
127	Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling. Channels, 2021, 15, 67-78.	2.8	17
128	Development of a QPatch Automated Electrophysiology Assay for Identifying KCa3.1 Inhibitors and Activators. Assay and Drug Development Technologies, 2013, 11, 551-560.	1.2	16
129	Chasing the Elusive Benzofuran Impurity of the THR Antagonist NH-3: Synthesis, Isotope Labeling, and Biological Activity. Journal of Organic Chemistry, 2016, 81, 1870-1876.	3.2	16
130	A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3. MAbs, 2018, 10, 636-650.	5.2	16
131	Inhibition of Soluble Epoxide Hydrolase as a Novel Approach to High Dose Diazepam Induced Hypotension. , 2016, 6, .		14
132	A pharmacologic activator of endothelial KCa channels increases systemic conductance and reduces arterial pressure in an anesthetized pig model. Vascular Pharmacology, 2016, 79, 24-31.	2.1	14
133	Structural Determinants for the Selectivity of the Positive KCa3.1 Gating Modulator 5-Methylnaphtho[2,1- <i>d</i>)oxazol-2-amine (SKA-121). Molecular Pharmacology, 2017, 92, 469-480.	2.3	14
134	SKA-31, an activator of Ca2+-activated K+ channels, improves cardiovascular function in aging. Pharmacological Research, 2020, 151, 104539.	7.1	13
135	Formulation-based approach to support early drug discovery and development efforts: a case study with enteric microencapsulation dosage form development for a triarylmethane derivative TRAM-34; a novel potential immunosuppressant. Drug Development and Industrial Pharmacy, 2010, 36, 563-569.	2.0	12
136	GABAA receptor subtype selectivity of the proconvulsant rodenticide TETS. Archives of Toxicology, 2018, 92, 833-844.	4.2	12
137	Alpha1-adrenergic stimulation selectively enhances endothelium-mediated vasodilation in rat cremaster arteries. Physiological Reports, 2018, 6, e13703.	1.7	12
138	The Trials and Tribulations of Structure Assisted Design of KCa Channel Activators. Frontiers in Pharmacology, 2019, 10, 972.	3.5	12
139	Structure–activity relationship exploration of Kv1.3 blockers based on diphenoxylate. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7106-7109.	2.2	11
140	Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Archives of Toxicology, 2020, 94, 1995-2007.	4.2	10
141	Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline. Journal of Molecular and Cellular Cardiology, 2021, 158, 163-177.	1.9	10
142	New capsaicin analogs as molecular rulers to define the permissive conformation of the mouse TRPV1 ligand-binding pocket. ELife, 2020, 9, .	6.0	10
143	A Metal-Free Method for Producing MRI Contrast at Amyloid-β. Journal of Alzheimer's Disease, 2016, 55, 1667-1681.	2.6	9
144	The potassium channel Kv1.3 as a therapeutic target forÂimmunocytoprotection after reperfusion. Annals of Clinical and Translational Neurology, 2021, 8, 2070-2082.	3.7	9

#	Article	IF	CITATIONS
145	Structure–Activity Relationship Study of Subtype-Selective Positive Modulators of K _{Ca} 2 Channels. Journal of Medicinal Chemistry, 2022, 65, 303-322.	6.4	9
146	Discovery of Novel Activators of Large-Conductance Calcium-Activated Potassium Channels for the Treatment of Cerebellar Ataxia. Molecular Pharmacology, 2022, 102, 17-28.	2.3	9
147	Spiro azepane-oxazolidinones as Kv1.3 potassium channel blockers: WO2010066840. Expert Opinion on Therapeutic Patents, 2010, 20, 1759-1765.	5.0	8
148	KCa channel activation normalizes endothelial function in Type 2 Diabetic resistance arteries by improving intracellular Ca2+ mobilization. Metabolism: Clinical and Experimental, 2021, 114, 154390.	3.4	8
149	ATP-evoked intracellular Ca2+ transients shape the ionic permeability of human microglia from epileptic temporal cortex. Journal of Neuroinflammation, 2021, 18, 44.	7.2	8
150	The feeding behaviour of Amyotrophic Lateral Sclerosis mouse models is modulated by the Ca ²⁺ â€activated K _{Ca} 3.1 channels. British Journal of Pharmacology, 2021, 178, 4891-4906.	5.4	8
151	The efficacy of Î ³ -aminobutyric acid type A receptor (GABA AR) subtype-selective positive allosteric modulators in blocking tetramethylenedisulfotetramine (TETS)-induced seizure-like behavior in larval zebrafish with minimal sedation. Toxicology and Applied Pharmacology, 2021, 426, 115643.	2.8	8
152	Identification of the Functional Binding Site for the Convulsant Tetramethylenedisulfotetramine in the Pore of the <i>α</i> ₂ <i>β</i> ₃ <i>γ</i> ₂ GABA _A Receptor. Molecular Pharmacology, 2021, 99, 78-91.	2.3	7
153	Channelopathy-causing mutations in the S45A/S45B and HA/HB helices of KCa2.3 and KCa3.1 channels alter their apparent Ca2+ sensitivity. Cell Calcium, 2022, 102, 102538.	2.4	7
154	Recent developments in ion channel pharmacology. Channels, 2015, 9, 335-335.	2.8	6
155	Vascular Reactivity Profile of Novel K _{Ca} 3.1â€5elective Positiveâ€Gating Modulators in the Coronary Vascular Bed. Basic and Clinical Pharmacology and Toxicology, 2016, 119, 184-192.	2.5	6
156	KCa3.1â~'/â~'Mice Do Not Develop CIA: Regulatory Role for KCa3.1 in Autoimmune Arthritis. Journal of Cellular Physiology, 2016, 231, 2313-2314.	4.1	6
157	Recent advances in our understanding of the structure and function of more unusual cation channels. F1000Research, 2019, 8, 123.	1.6	6
158	Structure-Activity Relationship of Neuroactive Steroids, Midazolam, and Perampanel Toward Mitigating Tetramine-Triggered Activity in Murine Hippocampal Neuronal Networks. Toxicological Sciences, 2021, 180, 325-341.	3.1	5
159	The seizureâ€inducing plastic explosive <scp>RDX</scp> inhibits the <i>α</i> 1 <i>β</i> 2 <i>γ</i> 2 <scp>GABA _A </scp> receptor. Annals of Clinical and Translational Neurology, 2022, , .	3.7	5
160	Pose Classification Using Three-Dimensional Atomic Structure-Based Neural Networks Applied to Ion Channel–Ligand Docking. Journal of Chemical Information and Modeling, 2022, 62, 2301-2315.	5.4	5
161	Assessing the Effects of Cytoprotectants on Selective Neuronal Loss, Sensorimotor Deficit and Microglial Activation after Temporary Middle Cerebral Occlusion. Brain Sciences, 2019, 9, 287.	2.3	4
162	Conditional KCa3.1-transgene induction in murine skin produces pruritic eczematous dermatitis with severe epidermal hyperplasia and hyperkeratosis. PLoS ONE, 2020, 15, e0222619.	2.5	3

#	Article	IF	CITATIONS
163	Are there superagonists for calcium-activated potassium channels?. Channels, 2017, 11, 504-506.	2.8	2
164	Muscle Damage in Dystrophic mdx Mice Is Influenced by the Activity of Ca2+-Activated KCa3.1 Channels. Life, 2022, 12, 538.	2.4	2
165	Effects of TRAM-34 and minocycline on neuroinflammation caused by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Research and Care, 2022, 10, e002777.	2.8	2
166	The erythroid K-Cl cotransport inhibitor [(dihydroindenyl)oxy]acetic acid blocks erythroid Ca ²⁺ -activated K ⁺ channel KCNN4. American Journal of Physiology - Cell Physiology, 2022, 323, C694-C705.	4.6	2
167	The Kv1.3 Blocker PAPâ€1 Reduces Infarction and Neurological Deficit in a Rat Model of Reperfusion Stroke. FASEB Journal, 2013, 27, .	0.5	1
168	Positive KCa channel gating modulators with selectivity for KCa3.1 (1057.6). FASEB Journal, 2014, 28, .	0.5	1
169	Editorial: Venoms, Animal and Microbial Toxins. Frontiers in Pharmacology, 2021, 12, 706573.	3.5	Ο
170	PAPâ€1, a Selective Small Molecule Kv1.3 Blocker. FASEB Journal, 2006, 20, A326.	0.5	0
171	SKAâ€31, a new activator of KCa2 and KCa3.1 K+ channels, potentiates the EDHF response and lowers blood pressure. FASEB Journal, 2009, 23, 1018.6.	0.5	Ο
172	Genetic deficit of SK3 and IK1 channels abolishes EDHFâ€ŧype vasodilation and elevates blood pressure FASEB Journal, 2009, 23, 1018.7.	0.5	0
173	Endothelial KCa ion channels: their compartmentation in caveolae and relevance to cardiovascular pathologies. FASEB Journal, 2010, 24, 784.3.	0.5	Ο
174	Potassium Channel Block by a Tripartite Complex of Neutral Ligands with a Potassium Ion. FASEB Journal, 2010, 24, 770.3.	0.5	0
175	Negative gating modulation by NS8593 depends on residues in the inner pore vestibule. FASEB Journal, 2011, 25, 1042.15.	0.5	0
176	NS6180, a new KCa3.1 blocker, inhibits T ell activation and dampens inflammation in a rat model of inflammatory bowel disease. FASEB Journal, 2012, 26, 695.12.	0.5	0
177	SKAâ€31, an enhancer of SK Ca and IK Ca channels, increases coronary flow in normotensive rats. FASEB Journal, 2012, 26, 857.3.	0.5	Ο
178	Rosetta modeling of the inner KCa3.1 pore, a hotspot for small molecule modulation. FASEB Journal, 2013, 27, 913.23.	0.5	0
179	SKAâ€31, a positive modulator of SK Ca and IK Ca channels, increases systemic conductance and lowers arrterial pressure in an anesthetized pig model. FASEB Journal, 2013, 27, 900.7.	0.5	0
180	SKAâ€111, a positive KCa channel gating modulator with selectivity for KCa3.1. FASEB Journal, 2013, 27, 913.22.	0.5	0

#	Article	IF	CITATIONS
181	Novel Negative Gating Modulators of KCa2/3 as Pharmacological Tools for Novel Treatments. FASEB Journal, 2015, 29, 943.2.	0.5	0
182	Structure Assisted Design of Small Molecule KCa Channel Modulators. FASEB Journal, 2018, 32, 556.1.	0.5	0
183	Chronic administration of an endothelial KCa channel activator (SKAâ€31) improves agonist evoked vasodilation in mesenteric arteries of aged rats. FASEB Journal, 2018, 32, 710.1.	0.5	0
184	In Vivo Targeting of the Endothelium to Improve Vascular Function in a Rodent Model of Type 2 Diabetes. FASEB Journal, 2019, 33, 685.2.	0.5	0
185	Prolonged Administration of the KCa Channel Activator SKAâ€31 Improves Cardiac Function and Blood Pressure in Type 2 Diabetic Gotoâ€Kakizaki Rats. FASEB Journal, 2019, 33, 683.3.	0.5	Ο