List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9305915/publications.pdf Version: 2024-02-01

KEVIN C ECCAN

#	Article	IF	CITATIONS
1	Considerations and practical implications of performing a phenotypic CRISPR/Cas survival screen. PLoS ONE, 2022, 17, e0263262.	1.1	4
2	Loss of mouse Stmn2 function causes motor neuropathy. Neuron, 2022, 110, 1671-1688.e6.	3.8	37
3	Whole-genome analysis of human embryonic stem cells enables rational line selection based on genetic variation. Cell Stem Cell, 2022, 29, 472-486.e7.	5.2	27
4	Cx43 hemichannels contribute to astrocyte-mediated toxicity in sporadic and familial ALS. Proceedings of the United States of America, 2022, 119, e2107391119.	3.3	29
5	Spinal motor neuron transplantation to enhance nerve reconstruction strategies: Towards a cell therapy. Experimental Neurology, 2022, 353, 114054.	2.0	6
6	Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nature Communications, 2022, 13, .	5.8	43
7	The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia. Nature Communications, 2022, 13, .	5.8	22
8	Cancer-Related Mutations Identified in Primed Human Pluripotent Stem Cells. Cell Stem Cell, 2021, 28, 10-11.	5.2	35
9	Genoppi is an open-source software for robust and standardized integration of proteomic and genetic data. Nature Communications, 2021, 12, 2580.	5.8	15
10	Human amyotrophic lateral sclerosis excitability phenotype screen: Target discovery and validation. Cell Reports, 2021, 35, 109224.	2.9	33
11	Connecting TDP-43 Pathology with Neuropathy. Trends in Neurosciences, 2021, 44, 424-440.	4.2	42
12	De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells. Stem Cell Reports, 2021, 16, 2138-2148.	2.3	14
13	The genetic architecture of DNA replication timing in human pluripotent stem cells. Nature Communications, 2021, 12, 6746.	5.8	26
14	Absence of Survival and Motor Deficits in 500 Repeat C9ORF72 BAC Mice. Neuron, 2020, 108, 775-783.e4.	3.8	33
15	C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature, 2020, 582, 89-94.	13.7	182
16	A High-Content Screen Identifies TPP1 and Aurora B as Regulators of Axonal Mitochondrial Transport. Cell Reports, 2019, 28, 3224-3237.e5.	2.9	31
17	RNA-seq as a tool for evaluating human embryo competence. Genome Research, 2019, 29, 1705-1718.	2.4	31
18	Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell–derived cortical interneurons from subjects with schizophrenia. Nature Neuroscience, 2019, 22, 229-242.	7.1	84

#	Article	IF	CITATIONS
19	Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nature Biomedical Engineering, 2019, 3, 571-582.	11.6	18
20	Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nature Neuroscience, 2019, 22, 1966-1974.	7.1	101
21	A Stem Cell-Based Screening Platform Identifies Compounds that Desensitize Motor Neurons to Endoplasmic Reticulum Stress. Molecular Therapy, 2019, 27, 87-101.	3.7	39
22	ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nature Neuroscience, 2019, 22, 167-179.	7.1	353
23	Herpesviral lytic gene functions render the viral genome susceptible to novel editing by CRISPR/Cas9. ELife, 2019, 8, .	2.8	30
24	Convergence of independent DISC1 mutations on impaired neurite growth via decreased UNC5D expression. Translational Psychiatry, 2018, 8, 245.	2.4	23
25	All-optical synaptic electrophysiology probes mechanism of ketamine-induced disinhibition. Nature Methods, 2018, 15, 823-831.	9.0	36
26	Oligodendrocyte differentiation of induced pluripotent stem cells derived from subjects with schizophrenias implicate abnormalities in development. Translational Psychiatry, 2018, 8, 230.	2.4	39
27	Comparative genomic analysis of embryonic, lineage-converted, and stem cell-derived motor neurons. Development (Cambridge), 2018, 145, .	1.2	10
28	TDP-43 induces p53-mediated cell death of cortical progenitors and immature neurons. Scientific Reports, 2018, 8, 8097.	1.6	38
29	All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS. Stem Cell Reports, 2018, 10, 1991-2004.	2.3	48
30	Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell Reports, 2018, 23, 2509-2523.	2.9	168
31	The C9orf72-interacting protein Smcr8 is a negative regulator of autoimmunity and lysosomal exocytosis. Genes and Development, 2018, 32, 929-943.	2.7	65
32	Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathologica Communications, 2018, 6, 55.	2.4	24
33	Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature, 2017, 545, 229-233.	13.7	409
34	Modelling Zika Virus Infection of the Developing Human Brain In Vitro Using Stem Cell Derived Cerebral Organoids. Journal of Visualized Experiments, 2017, , .	0.2	23
35	A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Stem Cell Reports, 2017, 9, 1315-1327.	2.3	17
36	Reactive Astrocytes Promote ALS-like Degeneration and Intracellular Protein Aggregation in Human Motor Neurons by Disrupting Autophagy through TGF-β1. Stem Cell Reports, 2017, 9, 667-680.	2.3	114

#	Article	IF	CITATIONS
37	Generation of a Motor Nerve Organoid with Human Stem Cell-Derived Neurons. Stem Cell Reports, 2017, 9, 1441-1449.	2.3	87
38	Genetic Ablation of AXL Does Not Protect Human Neural Progenitor Cells and Cerebral Organoids from Zika Virus Infection. Cell Stem Cell, 2016, 19, 703-708.	5.2	234
39	Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nature Neuroscience, 2016, 19, 542-553.	7.1	252
40	Generation of a TLE3 heterozygous knockout human embryonic stem cell line using CRISPR-Cas9. Stem Cell Research, 2016, 17, 441-443.	0.3	6
41	Loss-of-function mutations in the <i>C9ORF72</i> mouse ortholog cause fatal autoimmune disease. Science Translational Medicine, 2016, 8, 347ra93.	5.8	217
42	Comprehensive Protocols for CRISPR/Cas9â€based Gene Editing in Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2016, 38, 5B.6.1-5B.6.60.	3.0	26
43	Generation of a TLE1 homozygous knockout human embryonic stem cell line using CRISPR-Cas9. Stem Cell Research, 2016, 17, 430-432.	0.3	4
44	CAT7 and cat7l Long Non-coding RNAs Tune Polycomb Repressive Complex 1 Function during Human and Zebrafish Development. Journal of Biological Chemistry, 2016, 291, 19558-19572.	1.6	32
45	Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7701-E7709.	3.3	105
46	Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nature Communications, 2016, 7, 13283.	5.8	82
47	<i>SLC52A3</i> , A Brown–Vialetto–van Laere syndrome candidate gene is essential for mouse development, but dispensable for motor neuron differentiation. Human Molecular Genetics, 2016, 25, 1814-1823.	1.4	12
48	Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development (Cambridge), 2015, 142, 633-643.	1.2	131
49	ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nature Communications, 2015, 6, 6171.	5.8	205
50	Motoneurons Derived from Induced Pluripotent Stem Cells Develop Mature Phenotypes Typical of Endogenous Spinal Motoneurons. Journal of Neuroscience, 2015, 35, 1291-1306.	1.7	44
51	From Dish to Bedside: Lessons Learned While Translating Findings from a Stem Cell Model of Disease to a Clinical Trial. Cell Stem Cell, 2015, 17, 8-10.	5.2	86
52	Focus on induced pluripotency and cellular reprogramming. EMBO Journal, 2015, 34, 1435-1435.	3.5	0
53	Efficient CRISPR-Cas9-Mediated Generation of Knockin Human Pluripotent Stem Cells Lacking Undesired Mutations at the Targeted Locus. Cell Reports, 2015, 11, 875-883.	2.9	146
54	A perspective on stem cell modeling of amyotrophic lateral sclerosis. Cell Cycle, 2015, 14, 3679-3688.	1.3	15

#	Article	IF	CITATIONS
55	Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nature Neuroscience, 2015, 18, 17-24.	7.1	197
56	FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Molecular Biology of the Cell, 2014, 25, 2571-2578.	0.9	48
57	The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nature Communications, 2014, 5, 5464.	5.8	53
58	Genetic validation of a therapeutic target in a mouse model of ALS. Science Translational Medicine, 2014, 6, 248ra104.	5.8	27
59	Ketamine exposure in early development impairs specification of the primary germ cell layers. Neurotoxicology and Teratology, 2014, 43, 59-68.	1.2	9
60	Nanog-Independent Reprogramming to iPSCs with Canonical Factors. Stem Cell Reports, 2014, 2, 119-126.	2.3	47
61	Intrinsic Membrane Hyperexcitability of Amyotrophic Lateral Sclerosis Patient-Derived Motor Neurons. Cell Reports, 2014, 7, 1-11.	2.9	583
62	Pathways Disrupted in Human ALS Motor Neurons Identified through Genetic Correction of Mutant SOD1. Cell Stem Cell, 2014, 14, 781-795.	5.2	392
63	How to make spinal motor neurons. Development (Cambridge), 2014, 141, 491-501.	1.2	127
64	iPSC-Derived Dopamine Neurons Reveal Differences between Monozygotic Twins Discordant for Parkinson's Disease. Cell Reports, 2014, 9, 1173-1182.	2.9	202
65	Genetic Variation in Human DNA Replication Timing. Cell, 2014, 159, 1015-1026.	13.5	149
66	DNA methylation dynamics of the human preimplantation embryo. Nature, 2014, 511, 611-615.	13.7	488
67	Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations. Neuron, 2014, 81, 536-543.	3.8	521
68	Notch inhibition allows oncogene-independent generation of iPS cells. Nature Chemical Biology, 2014, 10, 632-639.	3.9	64
69	Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nature Neuroscience, 2013, 16, 780-789.	7.1	175
70	Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines. Cell, 2011, 144, 439-452.	13.5	899
71	Conversion of Mouse and Human Fibroblasts into Functional Spinal Motor Neurons. Cell Stem Cell, 2011, 9, 205-218.	5.2	591
72	Constructing and Deconstructing Stem Cell Models of Neurological Disease. Neuron, 2011, 70, 626-644.	3.8	141

3

#	Article	IF	CITATIONS
73	Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011, 471, 63-67.	13.7	1,147
74	A functionally characterized test set of human induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 279-286.	9.4	446
75	A Small-Molecule Inhibitor of Tgf-β Signaling Replaces Sox2 in Reprogramming by Inducing Nanog. Cell Stem Cell, 2009, 5, 491-503.	5.2	741
76	Human Embryonic Stem Cell-Derived Motor Neurons Are Sensitive to the Toxic Effect of Glial Cells Carrying an ALS-Causing Mutation. Cell Stem Cell, 2008, 3, 637-648.	5.2	436
77	Short-Circuiting Epiblast Development. Cell Stem Cell, 2007, 1, 131-132.	5.2	2
78	Dolly's Legacy: Human Nuclear Transplantation And Better Medicines for Our Children. Cloning and Stem Cells, 2007, 9, 21-25.	2.6	4
79	Non–cell autonomous effect of glia on motor neurons in an embryonic stem cell–based ALS model. Nature Neuroscience, 2007, 10, 608-614.	7.1	727
80	Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature, 2006, 441, 1109-1114.	13.7	237
81	Organization and Good Aseptic Technique in the Human Embryonic Stem Cell Laboratory. , 0, , 1-10.		0
82	Part B: RNA Interference in Human Embryonic Stem Cells. , 0, , 367-375.		0
83	In vivo Differentiation of Human Embryonic Stem Cells. , 0, , 121-147.		0
84	Extraembryonic Differentiation of Human ES Cells. , 0, , 169-177.		1
85	Part C: Directed Differentiation of Human Embryonic Stem Cells into Osteoblasts Cells. , 0, , 249-271.		0
86	Part C: Directed Differentiation of Human Embryonic Stem Cells into Spinal Motor Neurons. , 0, , 349-355.		1
87	Derivation of Human Embryonic Stem Cells. , 0, , 35-51.		4
88	Part A: Directed Differentiation of Human Embryonic Stem Cells into Early Endoderm Cells. , 0, , 179-186.		1
89	Part B: Directed Differentiation of Human Embryonic Stem Cells into Dopaminergic Neurons. , 0, , 337-347.		4

90 In vitro Differentiation of Human ES Cells. , 0, , 149-167.

#	Article	IF	CITATIONS
91	Part B: Directed Differentiation of Human Embryonic Stem Cells into Hepatic Cells. , 0, , 187-194.		0
92	Part C: Directed Differentiation of Human Embryonic Stem Cells into Pancreatic Cells. , 0, , 195-211.		0
93	Part A: Directed Differentiation of Human Embryonic Stem Cells into Cardiomyocytes. , 0, , 213-228.		0
94	Part B: Directed Differentiation of Human Embryonic Stem Cells into Endothelial Cells. , 0, , 229-248.		0
95	Part D: Directed Differentiation of Human Embryonic Stem Cells into Hematopoeiticin vivo Repopulating Cells. , 0, , 273-285.		0
96	Part E: Directed Differentiation of Human Embryonic Stem Cells into Lymphocytes. , 0, , 287-297.		0
97	Part F: Directed Differentiation of Human Embryonic Stem Cells into Myeloid Cells. , 0, , 299-325.		0
98	Part A: Directed Differentiation of Human Embryonic Stem Cells into Forebrain Neurons. , 0, , 327-336.		0
99	Part A: Gene Targeting in Human Embryonic Stem Cells: Knock out and Knock in by Homologous Recombination. , 0, , 357-365.		0
100	Part C: Generation of Human Gene Reporters Using Bacterial Artificial Chromosome Recombineering. , 0, , 377-387.		1
101	Sourcing Established Human Embryonic Stem Cell Lines. , 0, , 11-24.		4
102	Culture of Human Embryos for Stem Cell Derivation. , 0, , 25-34.		0
103	Standard Culture of Human Embryonic Stem Cells. , 0, , 53-79.		2
104	Chemically-Defined Culture of Human Embryonic Stem Cells. , 0, , 81-90.		0
105	Phenotypic Analysis of Human Embryonic Stem Cells. , 0, , 91-106.		1
106	Genetic and Epigenetic Analysis of Human Embryonic Stem Cell. , 0, , 107-119.		0