
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9305902/publications.pdf Version: 2024-02-01

TAKANODI SHIBATA

#	Article	IF	CITATIONS
1	Recent Advances in Iridium-Catalyzed Alkylation of C–H and N–H Bonds. ACS Catalysis, 2013, 3, 704-712.	11.2	322
2	Recent advances in enantioselective [2 + 2 + 2] cycloaddition. Organic and Biomolecular Chemistry, 2008, 6, 1317.	2.8	284
3	Recent Advances in the Catalytic Pauson–Khand-Type Reaction. Advanced Synthesis and Catalysis, 2006, 348, 2328-2336.	4.3	232
4	Ir(I)-Catalyzed C–H Bond Alkylation of C2-Position of Indole with Alkenes: Selective Synthesis of Linear or Branched 2-Alkylindoles. Journal of the American Chemical Society, 2012, 134, 17474-17477.	13.7	215
5	Iridium Complex-Catalyzed Highly Enantio- and Diastereoselective [2+2+2] Cycloaddition for the Synthesis of Axially Chiral Teraryl Compounds. Journal of the American Chemical Society, 2004, 126, 8382-8383.	13.7	207
6	Iridiumâ€Catalyzed Enantioselective CH Alkylation of Ferrocenes with Alkenes Using Chiral Diene Ligands. Angewandte Chemie - International Edition, 2014, 53, 5410-5413.	13.8	196
7	Facile Twoâ€6tep Synthesis of 1,10â€Phenanthrolineâ€Derived Polyaza[7]helicenes with High Fluorescence and CPL Efficiency. Angewandte Chemie - International Edition, 2017, 56, 3906-3910.	13.8	175
8	lr(I)-Catalyzed Enantioselective Secondary sp ³ C–H Bond Activation of 2-(Alkylamino)pyridines with Alkenes. Organic Letters, 2011, 13, 4692-4695.	4.6	167
9	Facile Synthesis of Cyclic Polyphenylenes by Consecutive Inter- and Intramolecular Cycloadditions of ortho-, meta-, and para-Phenylene-Tethered Triynes. Synthesis, 2012, 44, 3269-3284.	2.3	156
10	Enantioselective synthesis of planar-chiral benzosiloloferrocenes by Rh-catalyzed intramolecular C–H silylation. Chemical Communications, 2015, 51, 7802-7804.	4.1	105
11	Rh-Catalyzed Enantioselective [2 + 2] Cycloaddition of Alkynyl Esters and Norbornene Derivatives. Organic Letters, 2006, 8, 1343-1345.	4.6	98
12	Iridiumâ€Catalyzed Selective Synthesis of 4â€Substituted Benzofurans and Indoles <i>via</i> Directed Cyclodehydration. Advanced Synthesis and Catalysis, 2009, 351, 2850-2854.	4.3	98
13	Highly enantioselective synthesis of silahelicenes using Ir-catalyzed [2+2+2] cycloaddition. Chemical Communications, 2012, 48, 1311-1313.	4.1	98
14	Cationic Au(I)-Catalyzed Cycloisomerization of Aromatic Enynes for the Synthesis of Substituted Naphthalenes. Synlett, 2006, 2006, 0411-0414.	1.8	97
15	Cationic iridium-catalyzed enantioselective activation of secondary sp3 C–H bond adjacent to nitrogen atom. Tetrahedron, 2012, 68, 9009-9015.	1.9	97
16	Iridium(I) atalyzed Direct CH Bond Alkylation of the Câ€7 Position of Indolines with Alkenes. Advanced Synthesis and Catalysis, 2014, 356, 929-933.	4.3	91
17	Directed CH Alkenylation of Quinoline <i>N</i> â€Oxides at the Câ€8 Position Using a Cationic Rhodium(I) Catalyst. Advanced Synthesis and Catalysis, 2014, 356, 1516-1520.	4.3	80
18	Very Important Publication: Iridiumâ€Catalyzed Intramolecular Enantioselective CH Alkylation at the Câ€2 Position of <i>N</i> â€Alkenylindoles. Advanced Synthesis and Catalysis, 2015, 357, 1131-1135.	4.3	73

#	Article	IF	CITATIONS
19	Enantioselective Construction of Quaternary Carbon Centers by Catalytic [2 + 2 + 2] Cycloaddition of 1,6-Enynes and Alkynes. Organic Letters, 2005, 7, 4955-4957.	4.6	71
20	Enantioselective Intramolecular [2 + 2 + 2] Cycloaddition of 1,4-Diene-ynes:Â A New Approach to the Construction of Quaternary Carbon Stereocenters. Journal of the American Chemical Society, 2006, 128, 11766-11767.	13.7	71
21	Enantioselective sp ³ C–H alkylation of γ-butyrolactam by a chiral Ir(<scp>i</scp>) catalyst for the synthesis of 4-substituted γ-amino acids. Chemical Communications, 2015, 51, 16660-16663.	4.1	70
22	Catalytic Enantioselective Synthesis of Chiral Tetraphenylenes: Consecutive Inter―and Intramolecular Cycloadditions of Two Triynes. Angewandte Chemie - International Edition, 2009, 48, 8066-8069.	13.8	69
23	Rh(III)-Catalyzed C–H Bond Activation along with "Rollover―for the Synthesis of 4-Azafluorenes. Organic Letters, 2012, 14, 5106-5109.	4.6	67
24	Enantioselective Syntheses of Various Chiral Multicyclic Compounds with Quaternary Carbon Stereocenters by Catalytic Intramolecular Cycloaddition. Journal of the American Chemical Society, 2008, 130, 3451-3457.	13.7	64
25	Iridium-catalyzed consecutive and enantioselective [2+2+2] cycloaddition of tetraynes and hexaynes for the construction of an axially chiral biaryl system. Tetrahedron, 2008, 64, 821-830.	1.9	61
26	Enantioselective Intramolecular [2 + 2 + 2] Cycloaddition of Enediynes for the Synthesis of Chiral Cyclohexa-1,3-dienes. Journal of Organic Chemistry, 2007, 72, 6521-6525.	3.2	58
27	Enantioselective Synthesis of Chiral Tripodal Cage Compounds by [2 + 2 + 2] Cycloaddition of Branched Triynes. Organic Letters, 2009, 11, 3906-3908.	4.6	57
28	Catalytic Enantioselective Synthesis of Axially Chiral Polycyclic Aromatic Hydrocarbons (PAHs) via Regioselective C–C Bond Activation of Biphenylenes. Journal of the American Chemical Society, 2020, 142, 4714-4722.	13.7	56
29	Ir-catalyzed almost perfect enantioselective synthesis of helical polyaryls based on an axially-chiral sequence. Chemical Communications, 2005, , 6017.	4.1	52
30	Facile Two‣tep Synthesis of 1,10â€Phenanthrolineâ€Derived Polyaza[7]helicenes with High Fluorescence and CPL Efficiency. Angewandte Chemie, 2017, 129, 3964-3968.	2.0	51
31	Iridium-Catalyzed Enantioselective [2+2+2] Cycloaddition of Diynes and Monoalkynes for the Generation of Axial Chiralities. Advanced Synthesis and Catalysis, 2006, 348, 2475-2483.	4.3	50
32	Pt-Catalyzed Enantioselective Cycloisomerization for the Synthesis of Planar-Chiral Ferrocene Derivatives. Journal of Organic Chemistry, 2016, 81, 6266-6272.	3.2	50
33	Thermal and Au(I)-Catalyzed Intramolecular [4+2] Cycloaddition of Aryl-Substituted 1,6-Diynes for the Synthesis of Biaryl Compounds. Synlett, 2005, 2005, 2062-2066.	1.8	48
34	Iridium-Catalyzed Enantioselective Formal [4+2] Cycloaddition of Biphenylene and Alkynes for the Construction of Axial Chirality. Synlett, 2008, 2008, 765-768.	1.8	46
35	Enantioselective Formal Câ^'H Conjugate Addition of Acetanilides to βâ€5ubstituted Acrylates by Chiral Iridium Catalysts. Chemistry - A European Journal, 2017, 23, 88-91.	3.3	45
36	Intramolecular Consecutive Dehydroâ€Diels–Alder Reaction for the Catalytic and Enantioselective Construction of Axial Chirality. Angewandte Chemie - International Edition, 2018, 57, 15862-15865.	13.8	36

#	Article	IF	CITATIONS
37	Highly diastereo- and enantioselective construction of both central and axial chiralities by Rh-catalyzed [2 + 2 + 2] cycloaddition. Organic and Biomolecular Chemistry, 2008, 6, 4296.	2.8	34
38	Irâ€Catalyzed Enantioselective Intra―and Intermolecular Formal Câ^'H Conjugate Addition to βâ€Substituted α,βâ€Unsaturated Esters. Asian Journal of Organic Chemistry, 2018, 7, 1411-1418.	2.7	34
39	Chiral Rh―and Irâ€catalyzed intramolecular cycloaddition of hexaynes for the construction of new chiral skeletons. Heteroatom Chemistry, 2011, 22, 363-370.	0.7	33
40	Total Synthesis of <i>cis</i> â€Clavicipitic Acid from Asparagine via Irâ€Catalyzed CH bond Activation as a Key Step. Chemistry - A European Journal, 2015, 21, 11340-11343.	3.3	33
41	Cationic iridium-catalyzed C–H alkylation of 2-substituted pyridine N-oxides with acrylates. Organic Chemistry Frontiers, 2015, 2, 383-387.	4.5	31
42	Strategies for the Total Synthesis of Clavicipitic Acid. Chemistry - A European Journal, 2016, 22, 5468-5477.	3.3	31
43	Recent Advances of Biphenylene: Synthesis, Reactions and Uses. European Journal of Organic Chemistry, 2019, 2019, 2871-2883.	2.4	31
44	Enantioselective synthesis of tripodal cyclophanes and pyridinophanes by intramolecular [2+2+2] cycloaddition. Tetrahedron, 2012, 68, 2679-2686.	1.9	30
45	Catalytic and Enantioselective Synthesis of Chiral Multisubstituted Tribenzothiepins by Intermolecular Cycloadditions. Angewandte Chemie - International Edition, 2016, 55, 4552-4556.	13.8	30
46	Short-step synthesis and chiroptical properties of polyaza[5]–[9]helicenes with blue to green-colour emission. Chemical Communications, 2020, 56, 4484-4487.	4.1	30
47	Sulfur-directed carbon–sulfur bond cleavage for Rh-catalyzed regioselective alkynylthiolation of alkynes. Chemical Communications, 2017, 53, 9016-9019.	4.1	25
48	Iridium-Catalyzed Formal [4 + 1] Cycloaddition of Biphenylenes with Alkenes Initiated by C–C Bond Cleavage for the Synthesis of 9,9-Disubstituted Fluorenes. Organic Letters, 2016, 18, 1860-1863.	4.6	24
49	Rh-catalyzed intermolecular and enantioselective [4 + 2] cycloaddition of 1,3-dienes with dimethyl acetylenedicarboxylate. Organic and Biomolecular Chemistry, 2008, 6, 464-467.	2.8	23
50	One-Pot Cross-Coupling of Diborylmethane for the Synthesis of DithienylÂmethane Derivatives. Synlett, 2014, 25, 2184-2188.	1.8	22
51	Construction of a Polycyclic Conjugated System Containing a Dibenzazepine Moiety by Cationic Gold(I) atalyzed Cycloisomerization. European Journal of Organic Chemistry, 2016, 2016, 5234-5237.	2.4	22
52	Enantioselective construction of new chiral cyclic scaffolds using [2 + 2 + 2] cycloaddition. Pure and Applied Chemistry, 2011, 83, 597-605.	1.9	21
53	Enantioselective Synthesis of Sulfur ontaining Mediumâ€Ring Heterocycles with Axial Chiralities by Catalytic Intramolecular [2+2+2] Cycloaddition. European Journal of Organic Chemistry, 2017, 2017, 7266-7270.	2.4	20
54	αâ€Amino Acid Sulfonamides as Versatile Sulfonylation Reagents: Silverâ€Catalyzed Synthesis of Coumarins and Oxindoles by Radical Cyclization. European Journal of Organic Chemistry, 2018, 2018, 5905-5909.	2.4	20

#	Article	IF	CITATIONS
55	Catalytic Enantioselective Synthesis of Azepine-Fused Planar-Chiral Ferrocenes by Pt-Catalyzed Cycloisomerization. Organometallics, 2019, 38, 4029-4035.	2.3	19
56	lodine-Catalyzed Synthesis of Chiral 4-Imidazolidinones Using α-Amino Acid Derivatives via Dehydrogenative N–H/C(sp ³)–H Coupling. Journal of Organic Chemistry, 2019, 84, 12773-12783.	3.2	19
57	Functionalized BINOL- <i>mono</i> -PHOS for Multinuclear Cu-Catalysts in Asymmetric Conjugate Addition of Organozinc Reagents. Chemistry Letters, 2013, 42, 547-549.	1.3	17
58	Ir-Catalyzed Synthesis of Substituted Tribenzosilepins by Dehydrogenative C–H/Si–H Coupling. Journal of Organic Chemistry, 2018, 83, 3426-3432.	3.2	17
59	Detour and Direct Induction of Methyl-Containing Chiral Centers via Catalytic C-H or C-C Bond Formation. Synthesis, 2012, 44, 1427-1452.	2.3	16
60	Catalytic Dearomative Spirocyclization via Gold Carbene Species Derived from Ynamides: Efficient Synthesis of 2â€Azaspiro[4.5]decanâ€3â€ones. Chemistry - A European Journal, 2018, 24, 3721-3724.	3.3	16
61	Metalâ€Free N–H/C–H Coupling for Efficient Asymmetric Synthesis of Chiral Dihydroquinoxalinones from Readily Available αâ€Amino Acids. European Journal of Organic Chemistry, 2018, 2018, 1067-1070.	2.4	16
62	[2+2+2] Cycloaddition of Sulfanylbenzene-Tethered Diynes with Alkynes for the Synthesis of Multi-Substituted Dibenzothiophene Derivatives. Heterocycles, 2015, 90, 1094.	0.7	16
63	Ir-Catalyzed Enantioselective Formal C–H Conjugate Addition of Pyrrole and Indoles to α,β-Unsaturated Carbonyl Compounds. Organic Letters, 2021, 23, 9078-9082.	4.6	15
64	Intramolecular Câ^'H Alkenylation of <i>N</i> â€Alkynylindoles: <i>Exo</i> and <i>Endo</i> Selective Cyclization According to the Choice of Metal Catalyst. Advanced Synthesis and Catalysis, 2017, 359, 1849-1853.	4.3	14
65	Enantioselective Cross-Coupling of Electron-Deficient Alkenes via Ir-Catalyzed Vinylic sp ² C–H Alkylation. Organic Letters, 2021, 23, 8158-8162.	4.6	14
66	BINAM-mono-PHOS as New Entry for Multinuclear Copper Catalysts in Asymmetric Conjugate Addition of Organozinc Reagents. Synlett, 2013, 24, 1155-1159.	1.8	13
67	Enantioselective Synthesis of AminoÂindan Carboxylic Acid Derivatives by the Catalytic Intramolecular [2+2+2] Cycloaddition of Aminoâ€Acidâ€Tethered Triynes. European Journal of Organic Chemistry, 2016, 2016, 1405-1413.	2.4	13
68	Regioselective Activation of a Sterically More Hindered Câ^'C Bond of Biphenylenes Using an Alkene as Both a Directing Group and a Reaction Moiety. Chemistry - A European Journal, 2018, 24, 15173-15177.	3.3	12
69	Consecutive HDDA and TDDA reactions of silicon-tethered tetraynes for the synthesis of dibenzosilole-fused polycyclic compounds and their unique reactivity. Chemical Science, 2019, 10, 6715-6720.	7.4	12
70	Ir-Catalyzed Remote Functionalization by the Combination of Deconjugative Chain-Walking and C–H Activation Using a Transient Directing Group. Organic Letters, 2022, 24, 1313-1317.	4.6	11
71	Catalytic and Enantioselective Synthesis of Chiral Multisubstituted Tribenzothiepins by Intermolecular Cycloadditions. Angewandte Chemie, 2016, 128, 4628-4632.	2.0	9
72	Cationic Au(I)-Catalyzed Cycloisomerization of N-(2-Alkynylphenyl)indolines for the Construction of Indolobenzazepine Skeleton. Heterocycles, 2017, 94, 2229.	0.7	9

#	Article	IF	CITATIONS
73	Silverâ€Catalyzed Efficient Synthesis of Oxindoles and Pyrroloindolines via αâ€Aminoalkylation of <i>N</i> â€Arylacrylamides with Amino Acid Derivatives. Chemistry - an Asian Journal, 2018, 13, 496-499.	3.3	9
74	Intramolecular Consecutive Dehydroâ€Diels–Alder Reaction for the Catalytic and Enantioselective Construction of Axial Chirality. Angewandte Chemie, 2018, 130, 16088-16091.	2.0	9
75	Enantioselective Synthesis of Nine―to Elevenâ€Membered Cyclic Polyphenylenes Containing Heteroatoms by Catalytic Intramolecular [2+2+2] Cycloaddition. Asian Journal of Organic Chemistry, 2019, 8, 970-977.	2.7	9
76	Synthesis of NHC Ligands Containing a Sulfoxide Moiety and Their Use in Cross-Coupling via a Au(I)/(III) Catalytic Cycle. Bulletin of the Chemical Society of Japan, 2022, 95, 700-706.	3.2	9
77	8â€ <i>exo</i> â€ <i>dig</i> elective Cycloisomerization for the Synthesis of Dibenzo[<i>b</i> , <i>e</i>][1,4]diazocines Using Cationic Au ^I Catalysts. European Journal of Organic Chemistry, 2018, 2018, 4740-4747.	2.4	8
78	Ni-catalyzed non-activated C–S bond cleavage at ambient temperature for the synthesis of sulfur-containing polycyclic compounds. Chemical Communications, 2021, 57, 9048-9051.	4.1	8
79	Catalytic Synthesis of Dibenzazepines and Dibenzazocines by 7â€ <i>Exo</i> ―and 8â€ <i>Endo</i> â€ <i>Dig</i> â€Selective Cycloisomerization. European Journal of Organic Chemistry, 2021, 2021, 1688-1692.	2.4	8
80	DFT Studies on the Mechanism of the Iridium-Catalyzed Formal [4 + 1] Cycloaddition of Biphenylene with Alkenes. ACS Omega, 2017, 2, 5228-5234.	3.5	6
81	Catalytic Intramolecular [2+2+2] Cycloaddition of Peptide-Tethered Branched Triynes for the Synthesis of Cyclic Peptides. Heterocycles, 2017, 95, 1121.	0.7	6
82	Gold-catalyzed dual C–C bond cleavage of biphenylenes bearing a pendant alkyne at ambient temperature. Organic and Biomolecular Chemistry, 2020, 18, 5826-5831.	2.8	6
83	Synthesis and Chiroptical Properties of Quinoxalineâ€Fused Polyaza[5]–[7]helicenes with Orange olor CPL Emissions. Helvetica Chimica Acta, 2021, 104, e2100016.	1.6	5
84	Palladium-Catalyzed sp3 C–H Benzoxylation of Alanine Derivatives Using Aldehydes under Ambient Conditions. Synthesis, 2021, 53, 3085-3093.	2.3	5
85	Metalâ€Free Aminoiodination of Alkynes Under Visible Light Irradiation for the Construction of a Nitrogenâ€Containing Eightâ€Membered Ring System. Advanced Synthesis and Catalysis, 2021, 363, 2746-2751.	. 4.3	5
86	Thermally Stable Monosubstituted Thiophene 1-Oxide and 1-Imides Stabilized by a Bulky Rind Group at Their 3-Position: Synthesis, Structure, and Inversion Barriers on the Sulfur Atom. Bulletin of the Chemical Society of Japan, 2017, 90, 697-705.	3.2	4
87	Relativistic Effect on Homogeneous Catalytic Reaction by Cationic Iridium Catalysts. Journal of Computer Chemistry Japan, 2019, 18, 136-138.	0.1	2
88	Silver-Catalyzed C(sp3)-H Sulfonylation for the Synthesis of Benzyl Sulfones Using Toluene Derivatives and α-Amino Acid Sulfonamides. Bulletin of the Chemical Society of Japan, 2021, 94, 1377-1384.	3.2	2
89	Gold(I)-Catalyzed 10-endo-dig-Selective Cycloisomerization of N-(2-Anilinobenzyl)propargylamines. Heterocycles, 2020, 101, 195.	0.7	2
90	Pt(II)-Chiral Diene-Catalyzed Enantioselective Formal [4+2] Cycloaddition Initiated by C-C Bond Cleavage and Elucidation of a Pt(II)/(IV) Cycle by DFT Calculations. Organic Chemistry Frontiers, 0, , .	4.5	2

#	Article	IF	CITATIONS
91	Goldâ€Catalyzed Cascade and Divergent Synthesis of Indolobenzazepines and Indoloquinolines from Nitrogenâ€Tethered 1,8â€Diynes. European Journal of Organic Chemistry, 0, , .	2.4	2
92	Metal-Free Aerobic C–H Oxidation of Methylarenes to Aromatic Aldehydes by Sulfur-Containing Tetracyclic Compounds as Visible-Light Photocatalysts. Bulletin of the Chemical Society of Japan, 2022, 95, 768-770.	3.2	2
93	Tailâ€Toâ€Tail Stereoselective Dimerization of Acrylate Derivatives via Iridiumâ€Catalyzed Vinylic <i>sp</i> ² Câ~'H Activation. Advanced Synthesis and Catalysis, 0, , .	4.3	2
94	Iridium-Catalyzed Cycloadditions. , 0, , 277-298.		1
95	Synthesis of Hexaazatruxenes by Consecutive Nâ^'H/Câ^'H Coupling Using a Hypervalent Iodine Reagent and Evaluation of Their Photophysical Properties. European Journal of Organic Chemistry, 2022, 2022,	2.4	1