
Alessandro Faroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9305338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochemical functionalization of graphene oxide for directing stem cell differentiation. Journal of Molecular Structure, 2022, 1249, 131578.	1.8	1
2	Peripheral nerve regeneration following injury is altered in mice lacking P2X7 receptor. European Journal of Neuroscience, 2021, 54, 5798-5814.	1.2	4
3	Schwann-like adipose-derived stem cells as a promising therapeutic tool for peripheral nerve regeneration: effects of cholinergic stimulation. Neural Regeneration Research, 2021, 16, 1218.	1.6	10
4	Graphene Oxide Substrate Promotes Neurotrophic Factor Secretion and Survival of Human Schwann‣ike Adipose Mesenchymal Stromal Cells. Advanced Biology, 2021, 5, e2000271.	1.4	10
5	The angiogenic potential of CD271+ human adipose tissue-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2021, 12, 160.	2.4	12
6	Crossâ€ŧalk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors. Physiological Reports, 2021, 9, e14791.	0.7	11
7	Axonal GABA A stabilizes excitability in unmyelinated sensory axons secondary to NKCC1 activity. Journal of Physiology, 2021, 599, 4065-4084.	1.3	11
8	Transcriptomic Profile Reveals Deregulation of Hearing-Loss Related Genes in Vestibular Schwannoma Cells Following Electromagnetic Field Exposure. Cells, 2021, 10, 1840.	1.8	3
9	A Novel Bioengineered Functional Motor Unit Platform to Study Neuromuscular Interaction. Journal of Clinical Medicine, 2020, 9, 3238.	1.0	4
10	Development and Characterisation of an in vitro Model of Wallerian Degeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 784.	2.0	7
11	Functional Characterization of Muscarinic Receptors in Human Schwann Cells. International Journal of Molecular Sciences, 2020, 21, 6666.	1.8	10
12	Schwann Cell Autocrine and Paracrine Regulatory Mechanisms, Mediated by Allopregnanolone and BDNF, Modulate PKCε in Peripheral Sensory Neurons. Cells, 2020, 9, 1874.	1.8	13
13	Effects mediated by the α7 nicotinic acetylcholine receptor on cell proliferation and migration in rat adipose-derived stem cells. European Journal of Histochemistry, 2020, 64, .	0.6	6
14	Peripheral nervous system responses to biomaterials. , 2020, , 555-572.		0
15	Hyaluronic Acid (HA) Receptors and the Motility of Schwann Cell(-Like) Phenotypes. Cells, 2020, 9, 1477.	1.8	2
16	Muscarinic receptors modulate Nerve Growth Factor production in rat Schwann-like adipose-derived stem cells and in Schwann cells. Scientific Reports, 2020, 10, 7159.	1.6	19
17	GABA-B1 Receptor-Null Schwann Cells Exhibit Compromised In Vitro Myelination. Molecular Neurobiology, 2019, 56, 1461-1474.	1.9	11
18	Selfâ€Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adiposeâ€Derived Stem Cells, Advanced Healthcare Materials, 2019, 8, e1900410.	3.9	28

#	Article	IF	CITATIONS
19	Tissue Engineering: Selfâ€Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adiposeâ€Derived Stem Cells (Adv. Healthcare Mater. 17/2019). Advanced Healthcare Materials, 2019, 8, 1970073.	3.9	1
20	M2 receptors activation modulates cell growth, migration and differentiation of rat Schwann-like adipose-derived stem cells. Cell Death Discovery, 2019, 5, 92.	2.0	16
21	<p>Simplified in vitro engineering of neuromuscular junctions between rat embryonic motoneurons and immortalized human skeletal muscle cells</p> . Stem Cells and Cloning: Advances and Applications, 2019, Volume 12, 1-9.	2.3	10
22	Protocol for a phase I trial of a novel synthetic polymerÂnerveÂconduit 'Polynerve' in participants with sensory digitalÂnerve injuryÂ(UMANC). F1000Research, 2019, 8, 959.	0.8	5
23	Gene expression changes in dorsal root ganglia following peripheral nerve injury: roles in inflammation, cell death and nociception. Neural Regeneration Research, 2019, 14, 939.	1.6	42
24	Improving the glial differentiation of human Schwann-like adipose-derived stem cells with graphene oxide substrates. Interface Focus, 2018, 8, 20180002.	1.5	23
25	Bioactive Silkâ€Based Nerve Guidance Conduits for Augmenting Peripheral Nerve Repair. Advanced Healthcare Materials, 2018, 7, e1800308.	3.9	98
26	Selective Fiber Degeneration in the Peripheral Nerve of a Patient With Severe Complex Regional Pain Syndrome. Frontiers in Neuroscience, 2018, 12, 207.	1.4	17
27	Maintenance of a Schwann-Like Phenotype in Differentiated Adipose-Derived Stem Cells Requires the Synergistic Action of Multiple Growth Factors. Stem Cells International, 2017, 2017, 1-7.	1.2	11
28	Differentiated adipose-derived stem cells act synergistically with RGD-modified surfaces to improve neurite outgrowth in a co-culture model. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 647-655.	1.3	27
29	Human Schwannâ€like cells derived from adiposeâ€derived mesenchymal stem cells rapidly deâ€differentiate in the absence of stimulating medium. European Journal of Neuroscience, 2016, 43, 417-430.	1.2	58
30	Dorsal Root Ganglia Neurons and Differentiated Adipose-derived Stem Cells: An In Vitro Co-culture Model to Study Peripheral Nerve Regeneration. Journal of Visualized Experiments, 2015, , .	0.2	27
31	Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regeneration. Tissue Engineering - Part A, 2015, 21, 1152-1162.	1.6	80
32	Peripheral nerve regeneration: Experimental strategies and future perspectives. Advanced Drug Delivery Reviews, 2015, 82-83, 160-167.	6.6	446
33	Nerve Regenerative Effects of GABA-B Ligands in a Model of Neuropathic Pain. BioMed Research International, 2014, 2014, 1-13.	0.9	16
34	Deletion of GABAâ€B Receptor in Schwann Cells Regulates Remak Bundles and Small Nociceptive Câ€fibers. Glia, 2014, 62, 548-565.	2.5	37
35	Improving the survival of Schwann Cell-like adipose-derived stem cells in cell based therapies for nerve repair. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2014, 67, 1462.	0.5	0
36	Purinergic signaling mediated by P2X ₇ receptors controls myelination in sciatic nerves. Journal of Neuroscience Research, 2014, 92, 1259-1269.	1.3	25

Alessandro Faroni

#	Article	IF	CITATIONS
37	Adipose derived stem cells and nerve regeneration. Neural Regeneration Research, 2014, 9, 1341.	1.6	32
38	Adipose-Derived Stem Cells and Nerve Regeneration. International Review of Neurobiology, 2013, 108, 121-136.	0.9	47
39	Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neuroscience Letters, 2013, 544, 125-130.	1.0	75
40	Baclofen Modulates the Expression and Release of Neurotrophins in Schwann-Like Adipose Stem Cells. Journal of Molecular Neuroscience, 2013, 49, 233-243.	1.1	17
41	Differentiation of adipose-derived stem cells into Schwann cell phenotype induces expression of P2X receptors that control cell death. Cell Death and Disease, 2013, 4, e743-e743.	2.7	51
42	Expression of Functional γ-Aminobutyric Acid Type A Receptors in Schwann-Like Adult Stem Cells. Journal of Molecular Neuroscience, 2012, 47, 619-630.	1.1	25
43	The Neurosteroid Allopregnanolone Modulates Specific Functions in Central and Peripheral Glial Cells. Frontiers in Endocrinology, 2011, 2, 103.	1.5	44
44	Cobalamin deficiency-induced changes of epidermal growth factor (EGF)-receptor expression and EGF levels in rat spinal cord. Brain Research, 2011, 1376, 23-30.	1.1	10
45	Schwannâ€like adult stem cells derived from bone marrow and adipose tissue express γâ€aminobutyric acid type B receptors. Journal of Neuroscience Research, 2011, 89, 1351-1362.	1.3	25