Sheng Shui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9305228/publications.pdf

Version: 2024-02-01

		14124	11608
154	19,965	69	140
papers	citations	h-index	g-index
155	155	155	15791
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Uncovering the Root Leading to Accelerated Capacity Fade of Liâ€lon Coin Cells in Fast Charging. Energy Technology, 2023, 11, .	1.8	2
2	The Puzzles in Fast Charging of Li″on Batteries. Energy and Environmental Materials, 2022, 5, 1005-1007.	7. 3	12
3	Austen Angell's legacy in electrolyte research. Journal of Non-Crystalline Solids: X, 2022, 14, 100088.	0.5	4
4	Stabilizing Capacity Retention of Li-Ion Battery in Fast-Charge by Reducing Particle Size of Graphite. Journal of the Electrochemical Society, 2021, 168, 040519.	1.3	8
5	Oxalic Acid as a Cathode Additive Increasing Rate Capability of Ni-Rich Layered Cathode Materials. Journal of the Electrochemical Society, 2021, 168, 080512.	1.3	5
6	Design aspects of electrolytes for fast charge of Liâ€ion batteries. InformaÄnÃ-Materiály, 2021, 3, 125-130.	8.5	54
7	Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials. Journal of Energy Chemistry, 2020, 41, 135-141.	7.1	148
8	Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Materials, 2020, 24, 247-254.	9.5	420
9	Is Li/Graphite Half-Cell Suitable for Evaluating Lithiation Rate Capability of Graphite Electrode?. Journal of the Electrochemical Society, 2020, 167, 100510.	1.3	18
10	Monolayer guider. Nature Energy, 2020, 5, 496-497.	19.8	O
10		19.8	O 67
	Monolayer guider. Nature Energy, 2020, 5, 496-497.		
11	Monolayer guider. Nature Energy, 2020, 5, 496-497. Challenges and Strategies for Fast Charge of Liâ€lon Batteries. ChemElectroChem, 2020, 7, 3569-3577. Dualâ€Carbon Lithiumâ€lon Capacitors: Principle, Materials, and Technologies. Batteries and Supercaps,	1.7	67
11 12	Monolayer guider. Nature Energy, 2020, 5, 496-497. Challenges and Strategies for Fast Charge of Liâ€lon Batteries. ChemElectroChem, 2020, 7, 3569-3577. Dualâ€Carbon Lithiumâ€lon Capacitors: Principle, Materials, and Technologies. Batteries and Supercaps, 2020, 3, 1137-1146. Identifying rate limitation and a guide to design of fastâ€charging Liâ€ion battery. InformaÄnÃ-Materiály,	2.4	67 32
11 12 13	Monolayer guider. Nature Energy, 2020, 5, 496-497. Challenges and Strategies for Fast Charge of Liâ€ion Batteries. ChemElectroChem, 2020, 7, 3569-3577. Dualâ€Carbon Lithiumâ€ion Capacitors: Principle, Materials, and Technologies. Batteries and Supercaps, 2020, 3, 1137-1146. Identifying rate limitation and a guide to design of fastâ€charging Liâ€ion battery. InformaÄnĀ-MateriĀ¡ly, 2020, 2, 942-949. Unveiling Capacity Degradation Mechanism of Liâ€ion Battery in Fastâ€charging Process.	1.7 2.4 8.5	67 32 115
11 12 13	Monolayer guider. Nature Energy, 2020, 5, 496-497. Challenges and Strategies for Fast Charge of Liâ€ion Batteries. ChemElectroChem, 2020, 7, 3569-3577. Dualâ€Carbon Lithiumâ€ion Capacitors: Principle, Materials, and Technologies. Batteries and Supercaps, 2020, 3, 1137-1146. Identifying rate limitation and a guide to design of fastâ€charging Liâ€ion battery. InformaÄnÃ-MateriÃily, 2020, 2, 942-949. Unveiling Capacity Degradation Mechanism of Liâ€ion Battery in Fastâ€charging Process. ChemElectroChem, 2020, 7, 555-560. Reformulation of Electrolyte for Enhanced Fast-Charge Capability of Li-Ion Battery. Journal of the	1.7 2.4 8.5	67 32 115 34
11 12 13 14	Monolayer guider. Nature Energy, 2020, 5, 496-497. Challenges and Strategies for Fast Charge of Li″on Batteries. ChemElectroChem, 2020, 7, 3569-3577. Dualâ€Carbon Lithiumâ€lon Capacitors: Principle, Materials, and Technologies. Batteries and Supercaps, 2020, 3, 1137-1146. Identifying rate limitation and a guide to design of fastâ€charging Liâ€ion battery. InformaĂnÃ-Materiály, 2020, 2, 942-949. Unveiling Capacity Degradation Mechanism of Liâ€ion Battery in Fastâ€charging Process. ChemElectroChem, 2020, 7, 555-560. Reformulation of Electrolyte for Enhanced Fast-Charge Capability of Li-Ion Battery. Journal of the Electrochemical Society, 2020, 167, 060527. (Keynote) Understanding Performance Degradation of Li-Ion Batteries Under Fast Charge Conditions.	1.7 2.4 8.5 1.7	67 32 115 34

#	Article	IF	Citations
19	Insight into Performance Degradation of Ni-Rich Layered Cathode Materials. ECS Meeting Abstracts, 2019, , .	0.0	0
20	Problem and Simple Solutions of Layered Cathode Materials. ECS Meeting Abstracts, 2019, , .	0.0	0
21	Problem, Status, and Possible Solutions for Lithium Metal Anode of Rechargeable Batteries. ACS Applied Energy Materials, 2018, 1, 910-920.	2.5	135
22	An in-situ enabled lithium metal battery by plating lithium on a copper current collector. Electrochemistry Communications, 2018, 89, 23-26.	2.3	42
23	Efficient and stable cycling of lithium metal enabled by a conductive carbon primer layer. Sustainable Energy and Fuels, 2018, 2, 163-168.	2.5	9
24	Pyrite FeS2 as an in-situ oxygen remover for rechargeable batteries with layered cathode materials. Journal of Power Sources, 2018, 403, 167-172.	4.0	17
25	Preventing lithium dendrite-related electrical shorting in rechargeable batteries by coating separator with a Li-killing additive. Journal of Materials Chemistry A, 2018, 6, 10755-10760.	5.2	59
26	Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives. Journal of Power Sources, 2018, 407, 173-179.	4.0	50
27	Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor. Journal of Power Sources, 2017, 343, 322-328.	4.0	58
28	Effect of surface oxygen functionalities on capacitance of activated carbon in non-aqueous electrolyte. Journal of Solid State Electrochemistry, 2017, 21, 2029-2036.	1.2	14
29	A cost-effective approach for practically viable Li-ion capacitors by using Li ₂ S as an in situ Li-ion source material. Journal of Materials Chemistry A, 2017, 5, 14286-14293.	5.2	26
30	Lithium-Ion Batteries and Materials. , 2017, , 449-494.		11
31	Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery. Electrochemistry Communications, 2017, 83, 20-23.	2.3	33
32	A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta, 2017, 258, 1201-1207.	2.6	102
33	A new finding on the role of LiNO3 in lithium-sulfur battery. Journal of Power Sources, 2016, 322, 99-105.	4.0	195
34	Mechanism and Solution for the Capacity Fading of Li/FeS ₂ Battery. Journal of the Electrochemical Society, 2016, 163, A792-A797.	1.3	47
35	Pyrite FeS ₂ as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries. Journal of Materials Chemistry A, 2016, 4, 4371-4374.	5.2	189
36	Additive Effect on the Electrochemical Performance of Lithium–Sulfur Battery. Electrochimica Acta, 2015, 154, 205-210.	2.6	23

3

#	Article	IF	CITATIONS
37	Electrochemical verification of the redox mechanism of FeS2 in a rechargeable lithium battery. Electrochimica Acta, 2015, 176, 784-789.	2.6	43
38	Manufacture and Surface Modification of Polyolefin Separator. Green Energy and Technology, 2015, , 337-352.	0.4	5
39	Oxygen Redox Catalyst for Rechargeable Lithium-Air Battery. Green Energy and Technology, 2015, , 541-557.	0.4	0
40	Electrolytes for Lithium and Lithium-Ion Batteries. Green Energy and Technology, 2015, , 231-261.	0.4	12
41	Additives for Functional Electrolytes of Li-Ion Batteries. Green Energy and Technology, 2015, , 263-290.	0.4	3
42	Challenges of Key Materials for Rechargeable Batteries. Green Energy and Technology, 2015, , 1-24.	0.4	4
43	Chemical stability and electrochemical characteristics of FeS microcrystals as the cathode material of rechargeable lithium batteries. Journal of Materials Chemistry A, 2015, 3, 12240-12246.	5.2	33
44	The redox mechanism of FeS ₂ in non-aqueous electrolytes for lithium and sodium batteries. Journal of Materials Chemistry A, 2015, 3, 7689-7694.	5.2	137
45	Heteroatom-doped carbons: synthesis, chemistry and application in lithium/sulphur batteries. Inorganic Chemistry Frontiers, 2015, 2, 1059-1069.	3.0	105
46	Pyrite FeS ₂ –C composite as a high capacity cathode material of rechargeable lithium batteries. RSC Advances, 2015, 5, 87847-87854.	1.7	34
47	Insight into the Gassing Problem of Li-ion Battery. Frontiers in Energy Research, 2014, 2, .	1.2	46
48	Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery. Energies, 2014, 7, 4588-4600.	1.6	203
49	A simple approach for superior performance of lithium/sulphur batteries modified with a gel polymer electrolyte. Journal of Materials Chemistry A, 2014, 2, 7383-7388.	5.2	47
50	Poly(acrylic acid) gel as a polysulphide blocking layer for high-performance lithium/sulphur battery. Journal of Materials Chemistry A, 2014, 2, 18288-18292.	5.2	70
51	How to use Nanostructured Materials Effectively in Rechargeable Lithium/Sulfur Battery. , 2014, , 867-874.		0
52	How a gel polymer electrolyte affects performance of lithium/sulfur batteries. Electrochimica Acta, 2013, 114, 296-302.	2.6	82
53	Does the sulfur cathode require good mixing for a liquid electrolyte lithium/sulfur cell?. Electrochemistry Communications, 2013, 31, 10-12.	2.3	54
54	New insight into liquid electrolyte of rechargeable lithium/sulfur battery. Electrochimica Acta, 2013, 97, 226-230.	2.6	113

#	Article	IF	CITATIONS
55	Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources, 2013, 231, 153-162.	4.0	1,368
56	A Concept for Making Poly(ethylene oxide) Based Composite Gel Polymer Electrolyte Lithium/Sulfur Battery. Journal of the Electrochemical Society, 2013, 160, A1421-A1424.	1.3	58
57	Sulfurized Carbon: A Class of Cathode Materials for High Performance Lithium/Sulfur Batteries. Frontiers in Energy Research, 2013, 1, .	1.2	34
58	Status, Opportunities, and Challenges of Electrochemical Energy Storage. Frontiers in Energy Research, 2013, 1, .	1.2	28
59	Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio. Energies, 2012, 5, 5190-5197.	1.6	194
60	Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery. Journal of the Electrochemical Society, 2012, 159, A1226-A1229.	1.3	90
61	Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO ₃ -Contained Electrolyte. Journal of the Electrochemical Society, 2012, 159, A920-A923.	1.3	277
62	Catalytic Effect of Heat-treated Iron and Copper Phthalocyanines in Non-aqueous Electrolyte Li/air Batteries – A Review. Green, 2012, 2, .	0.4	6
63	Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta, 2012, 70, 344-348.	2.6	836
64	A new direction for the performance improvement of rechargeable lithium/sulfur batteries. Journal of Power Sources, 2012, 200, 77-82.	4.0	274
65	A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density. Journal of Power Sources, 2012, 211, 169-172.	4.0	117
66	Oxygen reduction reaction catalyst on lithium/air battery discharge performance. Journal of Materials Chemistry, 2011, 21, 10118.	6.7	216
67	Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery. Journal of Power Sources, 2011, 196, 2867-2870.	4.0	82
68	Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries. Electrochimica Acta, 2011, 56, 4544-4548.	2.6	54
69	The effect of quaternary ammonium on discharge characteristic of a non-aqueous electrolyte Li/O2 battery. Electrochimica Acta, 2011, 56, 1283-1287.	2.6	26
70	A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. Journal of Power Sources, 2011, 196, 3906-3910.	4.0	74
71	LiF Formation and Cathode Swelling in the Li/CF _x Battery. Journal of the Electrochemical Society, 2011, 158, A504-A510.	1.3	45
72	Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. Journal of Power Sources, 2010, 195, 1235-1240.	4.0	353

#	Article	IF	CITATIONS
73	A high energy density lithium/sulfur–oxygen hybrid battery. Journal of Power Sources, 2010, 195, 3684-3688.	4.0	27
74	Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell. Journal of Power Sources, 2009, 187, 233-237.	4.0	105
75	Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material. Journal of Power Sources, 2009, 188, 601-605.	4.0	52
76	A low temperature electrolyte for primary Li/CFx batteries. Journal of Power Sources, 2009, 188, 532-537.	4.0	36
77	Carbothermal treatment for the improved discharge performance of primary Li/CFx battery. Journal of Power Sources, 2009, 191, 648-652.	4.0	63
78	LiBF3Cl as an alternative salt for the electrolyte of Li-ion batteries. Journal of Power Sources, 2008, 180, 586-590.	4.0	33
79	Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte. Journal of Power Sources, 2007, 163, 713-718.	4.0	145
80	A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007, 164, 351-364.	4.0	1,343
81	Solvation Sheath of Li+in Nonaqueous Electrolytes and Its Implication of Graphite/Electrolyte Interface Chemistry. Journal of Physical Chemistry C, 2007, 111, 7411-7421.	1.5	338
82	Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries. Journal of Physical Chemistry B, 2006, 110, 7708-7719.	1.2	183
83	An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006, 8, 1423-1428.	2.3	319
84	EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006, 51, 1636-1640.	2.6	548
85	LiBOB-based gel electrolyte Li-ion battery for high temperature operation. Journal of Power Sources, 2006, 154, 276-280.	4.0	34
86	Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB. Journal of Power Sources, 2006, 156, 629-633.	4.0	93
87	An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. Journal of Power Sources, 2006, 159, 702-707.	4.0	99
88	Study of the charging process of a LiCoO2-based Li-ion battery. Journal of Power Sources, 2006, 160, 1349-1354.	4.0	275
89	Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery. Journal of Power Sources, 2006, 160, 1403-1409.	4.0	140
90	A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162, 1379-1394.	4.0	1,509

#	Article	IF	Citations
91	Aromatic isocyanate as a new type of electrolyte additive for the improved performance of Li-ion batteries. Journal of Power Sources, 2006, 163, 567-572.	4.0	34
92	The effect of the charging protocol on the cycle life of a Li-ion battery. Journal of Power Sources, 2006, 161, 1385-1391.	4.0	492
93	An inorganic composite membrane as the separator of Li-ion batteries. Journal of Power Sources, 2005, 140, 361-364.	4.0	132
94	Electrochemical impedance study of graphite/electrolyte interface formed in LiBOB/PC electrolyte. Journal of Power Sources, 2005, 143, 197-202.	4.0	84
95	Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes. Journal of Power Sources, 2005, 147, 234-240.	4.0	109
96	LiBOB: Is it an alternative salt for lithium ion chemistry?. Journal of Power Sources, 2005, 146, 79-85.	4.0	162
97	Li-ion battery with poly(acrylonitrile-methyl methacrylate)-based microporous gel electrolyte. Solid State Ionics, 2005, 176, 41-46.	1.3	26
98	Fabrication and evaluation of a polymer Li-ion battery with microporous gel electrolyte. Journal of Solid State Electrochemistry, 2005, 9, 77-82.	1.2	12
99	LiBOB as Additive in LiPF[sub 6]-Based Lithium Ion Electrolytes. Electrochemical and Solid-State Letters, 2005, 8, A365.	2.2	99
100	Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes. Journal of the Electrochemical Society, 2004, 151, A2106.	1.3	78
101	LiBOB-Based Electrolytes for Li-lon Batteries for Transportation Applications. Journal of the Electrochemical Society, 2004, 151, A1702.	1.3	28
102	Microporous poly(acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable lithium battery. Electrochimica Acta, 2004, 49, 3339-3345.	2.6	66
103	Microporous gel electrolyte Li-ion battery. Journal of Power Sources, 2004, 125, 114-118.	4.0	57
104	Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating. Journal of Power Sources, 2004, 129, 275-279.	4.0	25
105	Optimization of the forming conditions of the solid-state interface in the Li-ion batteries. Journal of Power Sources, 2004, 130, 281-285.	4.0	48
106	Evaluation on a water-based binder for the graphite anode of Li-ion batteries. Journal of Power Sources, 2004, 138, 226-231.	4.0	81
107	Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta, 2004, 49, 1057-1061.	2.6	758
108	Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes. Electrochemical and Solid-State Letters, 2004, 7, A273.	2.2	69

#	Article	IF	CITATIONS
109	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 1099-1101.	1.5	10
110	Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. Journal of Solid State Electrochemistry, 2003, 7, 147-151.	1.2	130
111	Alkaline composite film as a separator for rechargeable lithium batteries. Journal of Solid State Electrochemistry, 2003, 7, 492-496.	1.2	26
112	Effect of Li2CO3-coating on the performance of natural graphite in Li-ion battery. Electrochemistry Communications, 2003, 5, 979-982.	2.3	61
113	Li-ion cell with poly(acrylonitrile-methyl methacrylate)-based gel polymer electrolyte. Solid State lonics, 2003, 158, 375-380.	1.3	37
114	The low temperature performance of Li-ion batteries. Journal of Power Sources, 2003, 115, 137-140.	4.0	509
115	Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. Journal of Power Sources, 2003, 113, 166-172.	4.0	169
116	Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells. Journal of Power Sources, 2003, 119-121, 343-348.	4.0	76
117	Formation of the Graphite/Electrolyte Interface by Lithium Bis(oxalato)borate. Electrochemical and Solid-State Letters, 2003, 6, A117.	2.2	114
118	Chemical Analysis of Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes. Electrochemical and Solid-State Letters, 2003, 6, A144.	2.2	159
119	Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: I. Physical and Electrochemical Properties. Journal of the Electrochemical Society, 2003, 150, A161.	1.3	161
120	Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: II. Performance in Cell. Journal of the Electrochemical Society, 2003, 150, A170.	1.3	115
121	A Thermal Stabilizer for LiPF[sub 6]-Based Electrolytes of Li-lon Cells. Electrochemical and Solid-State Letters, 2002, 5, A206.	2.2	81
122	Understanding Formation of Solid Electrolyte Interface Film on LiMn[sub 2]O[sub 4] Electrode. Journal of the Electrochemical Society, 2002, 149, A1521.	1.3	100
123	Study of LiBF[sub 4] as an Electrolyte Salt for a Li-Ion Battery. Journal of the Electrochemical Society, 2002, 149, A586.	1.3	152
124	Lithium Bis(oxalato)borate Stabilizes Graphite Anode in Propylene Carbonate. Electrochemical and Solid-State Letters, 2002, 5, A259.	2.2	174
125	An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes. Journal of the Electrochemical Society, 2002, 149, A622.	1.3	304
126	Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate. Journal of the Electrochemical Society, 2002, 149, A1079.	1.3	187

#	Article	IF	Citations
127	Formation of Solid Electrolyte Interface in Lithium Nickel Mixed Oxide Electrodes during the First Cycling. Electrochemical and Solid-State Letters, 2002, 5, A92.	2.2	87
128	LiBOB as Salt for Lithium-Ion Batteries: A Possible Solution for High Temperature Operation. Electrochemical and Solid-State Letters, 2002, 5, A26.	2.2	358
129	A new approach toward improved low temperature performance of Li-ion battery. Electrochemistry Communications, 2002, 4, 928-932.	2.3	244
130	LiPF6–EC–EMC electrolyte for Li-ion battery. Journal of Power Sources, 2002, 107, 18-23.	4.0	102
131	Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. Journal of Power Sources, 2002, 109, 422-426.	4.0	154
132	Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 2002, 109, 458-464.	4.0	236
133	Effect of propylene carbonate on the low temperature performance of Li-ion cells. Journal of Power Sources, 2002, 110, 216-221.	4.0	147
134	Low temperature performance of graphite electrode in Li-ion cells. Electrochimica Acta, 2002, 48, 241-246.	2.6	249
135	Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF[sub 6] in Ethylene Carbonate-Ethyl Methyl Carbonate. Journal of the Electrochemical Society, 2001, 148, Al 196.	1.3	175
136	Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes. Electrochemical and Solid-State Letters, 2001, 4, A206.	2.2	328
137	Self-discharge of Li/LixMn2O4 batteries in relation to corrosion of aluminum cathode substrates. Journal of Power Sources, 2001, 102, 16-20.	4.0	43
138	Polyanionic electrolytes with high alkali ion conductivity. Journal of Physics Condensed Matter, 2001, 13, 8235-8243.	0.7	9
139	Liquid/Solid Phase Diagrams of Binary Carbonates for Lithium Batteriesâ€f Part II. Journal of the Electrochemical Society, 2001, 148, A299.	1.3	81
140	Molecular and anionic polymer and oligomer systems with microdecoupled conductivities. Electrochimica Acta, 2000, 45, 1229-1236.	2.6	39
141	Diminution of Supercooling of Electrolytes by Carbon Particles. Journal of the Electrochemical Society, 1999, 146, 3974-3980.	1.3	35
142	Room Temperature Inorganic "Quasiâ€Molten Salts―as Alkaliâ€Metal Electrolytes. Journal of the Electrochemical Society, 1996, 143, 3548-3554.	1.3	26
143	Variations on the salt-polymer electrolyte theme for flexible solid electrolytes. Solid State Ionics, 1996, 86-88, 17-28.	1.3	63
144	A Novel Electrolyte Solvent for Rechargeable Lithium and Lithiumâ€ion Batteries. Journal of the Electrochemical Society, 1996, 143, 4047-4053.	1.3	57

#	Article	IF	CITATIONS
145	Single-ion conductivity and carrier generation of polyelectrolytes. Solid State Ionics, 1995, 76, 121-125.	1.3	10
146	Impedance study on the interface of poly electrolyte and metal sodium. Solid State Ionics, 1995, 76, 127-132.	1.3	9
147	Single-Ionic Conductivityin Poly(Sodium 2-Methacryloyl 3-[Ω-Methoxyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Chemistry, 1994, 31, 543-553.	Tf 50 667 ⁻ 1 . 2	Td (Oligo
148	Single-ion conduction and lithium battery application for ionomeric cross-linking polymer. Journal of Applied Polymer Science, 1993, 48, 405-409.	1.3	25
149	Electrical properties of the viologen-grafted poly (epichlorohydrin-co-oxyethylene). Solid State lonics, 1993, 59, 179-181.	1.3	5
150	Synthesis and polymerization of oligo(oxyethylene) macromonomer bearing sodium sulfonate. Journal of Polymer Science Part A, 1993, 31, 2313-2318.	2.5	3
151	Polyacene as an Anode in Lithium Ion Batteries. Journal of the Electrochemical Society, 1993, 140, L107-L108.	1.3	9
152	Cationic Conductivity for Poly[Oligo(Oxyethylene) Methacrylate- <i>co</i> -Methacryloyl Hexylsulfonic Acid Alkali Metal Salt]. Journal of Macromolecular Science - Pure and Applied Chemistry, 1992, 29, 77-84.	1.2	8
153	Ferroin-based solid-state electrochromic display. Solid State Ionics, 1992, 52, 287-289.	1.3	5
154	Cationic Conductivity of Blend Complexes Composed of Poly[oligo(oxyethylene) methacrylate] and the Alkali Metal Salts of Poly(sulfoalkyl methacrylate). Polymer Journal, 1991, 23, 73-78.	1.3	45