List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9305182/publications.pdf Version: 2024-02-01

EDICA FLEISHMAN

#	Article	IF	CITATIONS
1	Assessing the Roles of Patch Quality, Area, and Isolation in Predicting Metapopulation Dynamics. Conservation Biology, 2002, 16, 706-716.	2.4	245
2	Understanding the population consequences of disturbance. Ecology and Evolution, 2018, 8, 9934-9946.	0.8	186
3	A NEW METHOD FOR SELECTION OF UMBRELLA SPECIES FOR CONSERVATION PLANNING. , 2000, 10, 569-579.		185
4	Effects of floristics, physiognomy and non-native vegetation on riparian bird communities in a Mojave Desert watershed. Journal of Animal Ecology, 2003, 72, 484-490.	1.3	129
5	A 2018 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity. Trends in Ecology and Evolution, 2018, 33, 47-58.	4.2	119
6	AN EMPIRICAL TEST OF RAPOPORT'S RULE: ELEVATIONAL GRADIENTS IN MONTANE BUTTERFLY COMMUNITI Ecology, 1998, 79, 2482-2493.	ES. 1.5	116
7	Modeling and Predicting Species Occurrence Using Broad-Scale Environmental Variables: an Example with Butterflies of the Great Basin. Conservation Biology, 2001, 15, 1674-1685.	2.4	109
8	Using Indicator Species to Predict Species Richness of Multiple Taxonomic Groups. Conservation Biology, 2005, 19, 1125-1137.	2.4	98
9	A Realistic Assessment of the Indicator Potential of Butterflies and Other Charismatic Taxonomic Groups. Conservation Biology, 2009, 23, 1109-1116.	2.4	95
10	Comparative influence of spatial scale on beta diversity within regional assemblages of birds and butterflies. Journal of Biogeography, 2004, 31, 917-929.	1.4	91
11	Deep neural networks for automated detection of marine mammal species. Scientific Reports, 2020, 10, 607.	1.6	89
12	Climate Change, Ecosystem Impacts, and Management for Pacific Salmon. Fisheries, 2008, 33, 502-506.	0.6	77
13	A Successful Predictive Model of Species Richness Based on Indicator Species. Conservation Biology, 2004, 18, 646-654.	2.4	76
14	Nestedness analysis and conservation planning: the importance of place, environment, and life history across taxonomic groups. Oecologia, 2002, 133, 78-89.	0.9	63
15	Life Histories, Salinity Zones, and Sublethal Contributions of Contaminants to Pelagic Fish Declines Illustrated with a Case Study of San Francisco Estuary, California, USA. Estuaries and Coasts, 2012, 35, 603-621.	1.0	55
16	Upsides and downsides: contrasting topographic gradients in species richness and associated scenarios for climate change. Journal of Biogeography, 2000, 27, 1209-1219.	1.4	53
17	Patterns and processes of nestedness in a Great Basin butterfly community. Oecologia, 1999, 119, 133.	0.9	51
18	Associations among spring-dependent aquatic assemblages and environmental and land use gradients in a Mojave Desert mountain range. Diversity and Distributions, 2005, 11, 91-99.	1.9	47

#	Article	IF	CITATIONS
19	Validation Tests of Predictive Models of Butterfly Occurrence Based on Environmental Variables. Conservation Biology, 2003, 17, 806-817.	2.4	43
20	A Horizon Scan of Emerging Issues for Global Conservation in 2019. Trends in Ecology and Evolution, 2019, 34, 83-94.	4.2	43
21	Effects of spatial scale and taxonomic group on partitioning of butterfly and bird diversity in the Great Basin, USA. Landscape Ecology, 2003, 18, 675-685.	1.9	41
22	Relationships between expanding pinyon–juniper cover and topography in the central Great Basin, Nevada. Journal of Biogeography, 2008, 35, 951-964.	1.4	41
23	A Horizon Scan of Emerging Global Biological Conservation Issues for 2020. Trends in Ecology and Evolution, 2020, 35, 81-90.	4.2	40
24	USING "INDICATOR―SPECIES TO MODEL SPECIES RICHNESS: MODEL DEVELOPMENT AND PREDICTIONS. , 2002, 12, 79-92.		38
25	Topographic Determinants of Faunal Nestedness in Great Basin Butterfly Assemblages: Applications to Conservation Planning. Conservation Biology, 2002, 16, 422-429.	2.4	37
26	Patterns of spatial autocorrelation of assemblages of birds, floristics, physiognomy, and primary productivity in the central Great Basin, USA. Diversity and Distributions, 2006, 12, 236-243.	1.9	32
27	Ten Years On: A Review of the First Global Conservation Horizon Scan. Trends in Ecology and Evolution, 2019, 34, 139-153.	4.2	32
28	Spatial and temporal variations in species occurrence rate affect the accuracy of occurrence models. Global Ecology and Biogeography, 2006, 15, 27-38.	2.7	29
29	Use of guilds for modelling avian responses to vegetation in the Intermountain West (USA). Global Ecology and Biogeography, 2008, 17, 758-769.	2.7	29
30	Monitoring populationâ€level responses of marine mammals to human activities. Marine Mammal Science, 2016, 32, 1004-1021.	0.9	27
31	Biogeography of Great Basin butterflies: revisiting patterns, paradigms, and climate change scenarios. Biological Journal of the Linnean Society, 2001, 74, 501-515.	0.7	26
32	Mapping of land cover with openâ€source software and ultraâ€highâ€resolution imagery acquired with unmanned aerial vehicles. Remote Sensing in Ecology and Conservation, 2020, 6, 487-497.	2.2	23
33	Quantifying Ecological Integrity of Terrestrial Systems to Inform Management of Multiple-Use Public Lands in the United States. Environmental Management, 2019, 64, 1-19.	1.2	21
34	Monitoring the Response of Butterfly Communities to Prescribed Fire. Environmental Management, 2000, 26, 685-695.	1.2	20
35	ORIGINAL ARTICLE: Comparison of predictor sets for species richness and the number of rare species of butterflies and birds. Journal of Biogeography, 2006, 34, 90-101.	1.4	20
36	Improve automatic detection of animal call sequences with temporal context. Journal of the Royal Society Interface, 2021, 18, 20210297.	1.5	20

#	Article	IF	CITATIONS
37	Influence of the temporal resolution of data on the success of indicator species models of species richness across multiple taxonomic groups. Biological Conservation, 2005, 124, 503-518.	1.9	18
38	Effects of Environmental Heterogeneity and Disturbance on the Native and Non-native Flora of Desert Springs. Biological Invasions, 2006, 8, 1091-1101.	1.2	15
39	Relationship Between Avifaunal Occupancy and Riparian Vegetation in the Central Great Basin (Nevada,) Tj ETQq1	1 0.7843 1.4	14 rgBT /0\ 15
40	Distinguishing between signal and noise in faunal responses to environmental change. Global Ecology and Biogeography, 2003, 12, 395-402.	2.7	13
41	Influence of Temporal Scale of Sampling on Detection of Relationships between Invasive Plants and the Diversity Patterns of Plants and Butterflies. Conservation Biology, 2004, 18, 1525-1532.	2.4	12
42	Estimation of the occupancy of butterflies in diverse biogeographic regions. Diversity and Distributions, 2017, 23, 1-13.	1.9	10
43	Relating beta diversity of birds and butterflies in the Great Basin to spatial resolution, environmental variables and traitâ€based groups. Global Ecology and Biogeography, 2019, 28, 328-340.	2.7	9
44	Single-Species and Multiple-Species Connectivity Models for Large Mammals on the Navajo Nation. Western North American Naturalist, 2017, 77, 237-251.	0.2	8
45	Identifying spatially and temporally transferrable surrogate measures of species richness. Ecological Indicators, 2018, 84, 470-478.	2.6	8
46	Bias in estimated breeding-bird abundance from closure-assumption violations. Ecological Indicators, 2021, 131, 108170.	2.6	8
47	Conservation in Practice: Overcoming Obstacles to Implementation. Conservation Biology, 1999, 13, 450-452.	2.4	7
48	Current and Potential Future Elevational Distributions of Birds Associated with Pinyon–Juniper Woodlands in the Central Great Basin, U.S.A Restoration Ecology, 2009, 17, 731-739.	1.4	7
49	Learning Deep Models from Synthetic Data for Extracting Dolphin Whistle Contours. , 2020, , .		7
50	Effects of point ount duration on estimated detection probabilities and occupancy of breeding birds. Journal of Field Ornithology, 2017, 88, 80-93.	0.3	6
51	Use of macroecology to integrate social justice and conservation. Global Ecology and Biogeography, 2019, 28, 1512-1518.	2.7	5
52	Introduction to the Special Section on Alternative Futures for Great Basin Ecosystems. Restoration Ecology, 2009, 17, 704-706.	1.4	4
53	Early Progress and Challenges in Assessing Aggregate Sound Exposure and Associated Effects on Marine Mammals. , 2012, , .		3
54	Expert Elicitation of Population-Level Effects of Disturbance. Advances in Experimental Medicine and Biology, 2016, 875, 295-302.	0.8	3

#	Article	IF	CITATIONS
55	Linking species richness and size diversity in birds and fishes. Ecography, 2018, 41, 1979-1991.	2.1	3
56	Strengths and shortcomings of habitat exchange programs for species conservation. Conservation Letters, 2022, 15, e12846.	2.8	3
57	Current Status of Development of Methods to Assess Effects of Cumulative or Aggregated Underwater Sounds on Marine Mammals. Advances in Experimental Medicine and Biology, 2016, 875, 303-311.	0.8	1
58	A Holistic View of Butterflies. Conservation Biology, 1995, 9, 968-969.	2.4	0
59	Moving Scientific Review Beyond Academia. Conservation Biology, 2001, 15, 547-549.	2.4	0
60	Bio[statistics]philia. Conservation Biology, 2004, 18, 286-288.	2.4	0
61	Development of ecologically meaningful, multiple-species conservation strategies under the California and U.S. Endangered Species Acts. California Fish and Wildlife Journal, 2021, , 61-75.	0.2	0
62	Evaluating the ability of occurrence models to predict nest locations and associated vegetation. Ibis, 0, , .	1.0	0