Jayasree Chakraborty

List of Publications by Citations

Source: https://exaly.com/author-pdf/9304975/jayasree-chakraborty-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54 746 17 25 g-index

67 993 3 4.15 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
54	Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis. <i>Annals of Surgical Oncology</i> , 2018 , 25, 1034-1042	3.1	61
53	Cooperative multi-robot path planning using differential evolution. <i>Journal of Intelligent and Fuzzy Systems</i> , 2009 , 20, 13-27	1.6	46
52	CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas. <i>Medical Physics</i> , 2018 , 45, 5019-5029	4.4	46
51	Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis. <i>Journal of the American College of Surgeons</i> , 2017 , 225, 778-788.e1	4.4	43
50	Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients. <i>PLoS ONE</i> , 2017 , 12, e0188022	3.7	43
49	Automatic detection of pectoral muscle using average gradient and shape based feature. <i>Journal of Digital Imaging</i> , 2012 , 25, 387-99	5.3	38
48	Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility. <i>Journal of Medical Imaging</i> , 2018 , 5, 011020	2.6	34
47	Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation. <i>Abdominal Radiology</i> , 2019 , 44, 3755-3763	3	31
46	Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. <i>European Radiology</i> , 2020 , 30, 195-205	8	31
45	Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. <i>Abdominal Radiology</i> , 2018 , 43, 3271-3278	3	29
44	Statistical measures of orientation of texture for the detection of architectural distortion in prior mammograms of interval-cancer. <i>Journal of Electronic Imaging</i> , 2012 , 21, 033010-1	0.7	25
43	Neighborhood Structural Similarity Mapping for the Classification of Masses in Mammograms. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2018 , 22, 826-834	7.2	24
42	Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis. <i>Hpb</i> , 2019 , 21, 212-218	3.8	22
41	CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma. <i>Abdominal Radiology</i> , 2019 , 44, 3148-3157	3	22
40	Brain Tumor Classification Using ResNet-101 Based Squeeze and Excitation Deep Neural Network 2019 ,		21
39	Computer-aided detection and diagnosis of mammographic masses using multi-resolution analysis of oriented tissue patterns. <i>Expert Systems With Applications</i> , 2018 , 99, 168-179	7.8	20
38	Measures of divergence of oriented patterns for the detection of architectural distortion in prior mammograms. <i>International Journal of Computer Assisted Radiology and Surgery</i> , 2013 , 8, 527-45	3.9	20

37	Distributed cooperative multi-robot path planning using differential evolution 2008,		16
36	Classification of benign and malignant masses in mammograms using multi-resolution analysis of oriented patterns 2015 ,		14
35	Automatic characterization of masses in mammograms 2013,		13
34	Analysis of 2D singularities for mammographic mass classification. <i>IET Computer Vision</i> , 2017 , 11, 22-32	1.4	11
33	A heuristic approach to automated nipple detection in digital mammograms. <i>Journal of Digital Imaging</i> , 2013 , 26, 932-40	5.3	10
32	Computer-Aided Detection of Mammographic Masses Using Hybrid Region Growing Controlled by Multilevel Thresholding. <i>Journal of Medical and Biological Engineering</i> , 2019 , 39, 352-366	2.2	10
31	Rotation and translation selective Pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II 2009 ,		9
30	Detection of architectural distortion in prior mammograms using statistical measures of orientation of texture 2012 ,		9
29	A Study of Different Texture Features Based on Local Operator for Benign-malignant Mass Classification. <i>Procedia Computer Science</i> , 2016 , 93, 389-395	1.6	8
28	Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases. <i>European Radiology</i> , 2019 , 29, 458-467	8	8
27	Quantitative Imaging Features and Postoperative Hepatic Insufficiency: A Multi-Institutional Expanded Cohort. <i>Journal of the American College of Surgeons</i> , 2018 , 226, 835-843	4.4	7
26	Detection of masses in mammograms using region growing controlled by multilevel thresholding 2012 ,		7
25	Differences in Liver Parenchyma are Measurable with CT Radiomics at Initial Colon Resection in Patients that Develop Hepatic Metastases from Stage II/III Colon Cancer. <i>Annals of Surgical Oncology</i> , 2021 , 28, 1982-1989	3.1	7
24	Edge Weighted Local Texture Features for the Categorization of Mammographic Masses. <i>Journal of Medical and Biological Engineering</i> , 2018 , 38, 457-468	2.2	6
23	A Multi-Objective Pareto-Optimal Solution to the Box-Pushing Problem by Mobile Robots 2008,		5
22	Multimodal radiomics and cyst fluid inflammatory markers model to predict preoperative risk in intraductal papillary mucinous neoplasms. <i>Journal of Medical Imaging</i> , 2020 , 7, 031507	2.6	5
21	Detection of the nipple in mammograms with Gabor filters and the Radon transform. <i>Biomedical Signal Processing and Control</i> , 2015 , 15, 80-89	4.9	4
20	Face detection using skin color modeling and geometric feature 2014 ,		4

19	Quantification of CT images for the classification of high- and low-risk pancreatic cysts 2017,		3
18	Dynamic background modeling using intensity and orientation distribution of video sequence. <i>Multimedia Tools and Applications</i> , 2019 , 78, 22537-22554	2.5	3
17	A Screening CAD Tool for the Detection of Microcalcification Clusters in Mammograms. <i>Journal of Digital Imaging</i> , 2019 , 32, 728-745	5.3	3
16	A robust cooperative multi-robot path-planning in noisy environment 2010 ,		3
15	Multi-resolution analysis using integrated microscopic configuration with local patterns for benign-malignant mass classification 2018 ,		3
14	Deep convolutional neural network for the classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma 2018 ,		3
13	MhURI:A Supervised Segmentation Approach to Leverage Salient Brain Tissues in Magnetic Resonance Images. <i>Computer Methods and Programs in Biomedicine</i> , 2021 , 200, 105841	6.9	3
12	Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis. <i>Hpb</i> , 2017 , 19, S48	3.8	2
11	Texture analysis of gradient images for benign-malignant mass classification 2017,		2
10	Detection of architectural distortion using coherence in relation to the expected orientation of breast tissue 2012 ,		2
10			2
	breast tissue 2012 , Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with	3.1	
9	breast tissue 2012, Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with neoadjuvant chemotherapy 2016, Recurrence After Resection of Pancreatic Cancer: Can Radiomics Predict Patients at Greatest Risk	3.1	2
9	Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with neoadjuvant chemotherapy 2016, Recurrence After Resection of Pancreatic Cancer: Can Radiomics Predict Patients at Greatest Risk of Liver Metastasis?. <i>Annals of Surgical Oncology</i> , 2022, 1		2
9 8 7	Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with neoadjuvant chemotherapy 2016, Recurrence After Resection of Pancreatic Cancer: Can Radiomics Predict Patients at Greatest Risk of Liver Metastasis?. <i>Annals of Surgical Oncology</i> , 2022, 1 Video error concealment using Speeded Up Robust Features and affine transformation 2014,		2 2 1
9 8 7 6	Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with neoadjuvant chemotherapy 2016, Recurrence After Resection of Pancreatic Cancer: Can Radiomics Predict Patients at Greatest Risk of Liver Metastasis?. <i>Annals of Surgical Oncology</i> , 2022, 1 Video error concealment using Speeded Up Robust Features and affine transformation 2014, Video error concealment through 3-D face model. <i>Multimedia Tools and Applications</i> , 2017, 76, 23931-38 Benign-malignant mass classification in mammogram using edge weighted local texture features		2 1 1
9 8 7 6	Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with neoadjuvant chemotherapy 2016, Recurrence After Resection of Pancreatic Cancer: Can Radiomics Predict Patients at Greatest Risk of Liver Metastasis?. Annals of Surgical Oncology, 2022, 1 Video error concealment using Speeded Up Robust Features and affine transformation 2014, Video error concealment through 3-D face model. Multimedia Tools and Applications, 2017, 76, 23931-3931-3931-3931-3931-3931-3931-3931	23 2 55	2 2 1 1

Multi-Resolution Analysis of Edge-Texture Features for Mammographic Mass Classification. *Journal of Circuits, Systems and Computers*, **2020**, 29, 2050156

0.9