Jongbaeg Kim

List of Publications by Citations

Source: https://exaly.com/author-pdf/9304838/jongbaeg-kim-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,815 87 40 22 g-index h-index citations papers 106 2,363 6.9 5.31 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
87	Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization. <i>ACS Nano</i> , 2016 , 10, 9287-9296	16.7	243
86	A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. <i>ACS Applied Materials & Description of the Action of</i>	9.5	141
85	MoS 2 gas sensor functionalized by Pd for the detection of hydrogen. <i>Sensors and Actuators B: Chemical</i> , 2017 , 250, 686-691	8.5	119
84	A high power density miniaturized microbial fuel cell having carbon nanotube anodes. <i>Journal of Power Sources</i> , 2015 , 273, 823-830	8.9	93
83	Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes. <i>Small</i> , 2019 , 15, e1805120	11	85
82	Molecularly Engineered Surface Triboelectric Nanogenerator by Self-Assembled Monolayers (METS). <i>Chemistry of Materials</i> , 2015 , 27, 4749-4755	9.6	77
81	Multi-Layered, Hierarchical Fabric-Based Tactile Sensors with High Sensitivity and Linearity in Ultrawide Pressure Range. <i>Advanced Functional Materials</i> , 2019 , 29, 1902484	15.6	73
80	Flexible, Transparent, Sensitive, and Crosstalk-Free Capacitive Tactile Sensor Array Based on Graphene Electrodes and Air Dielectric. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700427	6.4	64
79	Development of a flexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite. <i>Journal of Micromechanics and Microengineering</i> , 2014 , 24, 075012	2	61
78	Aligned carbon nanotube arrays for degradation-resistant, intimate contact in micromechanical devices. <i>Advanced Materials</i> , 2011 , 23, 2231-6	24	46
77	Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications. <i>Advanced Materials</i> , 2021 , 33, e2005902	24	45
76	Highly sensitive hydrogen sensor based on suspended, functionalized single tungsten nanowire bridge. <i>Sensors and Actuators B: Chemical</i> , 2009 , 136, 92-98	8.5	42
75	Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor. <i>Smart Materials and Structures</i> , 2018 , 27, 035001	3.4	37
74	A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion. <i>Smart Materials and Structures</i> , 2014 , 23, 045040	3.4	37
73	Heterogeneous Integration of Carbon-Nanotube-Graphene for High-Performance, Flexible, and Transparent Photodetectors. <i>Small</i> , 2017 , 13, 1700918	11	36
72	Light-assisted recovery of reacted MoS for reversible NO sensing at room temperature. <i>Nanotechnology</i> , 2019 , 30, 355504	3.4	35
71	A High-Efficiency DCDC Boost Converter for a Miniaturized Microbial Fuel Cell. <i>IEEE Transactions</i> on <i>Power Electronics</i> , 2015 , 30, 2041-2049	7.2	35

(2018-2012)

70	Deformable Carbon Nanotube-Contact Pads for Inertial Microswitch to Extend Contact Time. <i>IEEE Transactions on Industrial Electronics</i> , 2012 , 59, 4914-4920	8.9	33
69	A Fully Transparent, Flexible, Sensitive, and Visible-Blind Ultraviolet Sensor Based on Carbon Nanotube@raphene Hybrid. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800737	6.4	28
68	Flexible Energy Harvester with Piezoelectric and Thermoelectric Hybrid Mechanisms for Sustainable Harvesting. <i>International Journal of Precision Engineering and Manufacturing - Green Technology</i> , 2019 , 6, 691-698	3.8	26
67	Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation. <i>Applied Physics Letters</i> , 2014 , 104, 113904	3.4	26
66	A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. <i>ACS Applied Materials & Company </i>	9.5	23
65	Suspended GaN nanowires as NO2 sensor for high temperature applications. <i>Analyst, The</i> , 2013 , 138, 2432-7	5	22
64	Integrated carbon nanotube array as dry adhesive for high-temperature silicon processing. <i>Advanced Materials</i> , 2011 , 23, 4285-9	24	22
63	Highly Sensitive Detection of Benzene, Toluene, and Xylene Based on CoPP-Functionalized TiO Nanoparticles with Low Power Consumption. <i>ACS Sensors</i> , 2020 , 5, 754-763	9.2	21
62	Humidity-Resistant, Fabric-Based, Wearable Triboelectric Energy Harvester by Treatment of Hydrophobic Self-Assembled Monolayers. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800048	6.8	19
61	A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles. <i>Nanotechnology</i> , 2016 , 27, 205502	3.4	16
60	Thickness-, alignment- and defect-tunable growth of carbon nanotube arrays using designed mechanical loads. <i>Carbon</i> , 2014 , 66, 126-133	10.4	16
	, , ,		
59	Fabrication and characterization of VOC sensor array based on SnO2 and ZnO nanoparticles functionalized by metalloporphyrins. <i>Micro and Nano Systems Letters</i> , 2018 , 6,	2	15
59 58	Fabrication and characterization of VOC sensor array based on SnO2 and ZnO nanoparticles	3.3	15
	Fabrication and characterization of VOC sensor array based on SnO2 and ZnO nanoparticles functionalized by metalloporphyrins. <i>Micro and Nano Systems Letters</i> , 2018 , 6, Development of MEMS Multi-Mode Electrostatic Energy Harvester Based on the SOI Process.	2	
58	Fabrication and characterization of VOC sensor array based on SnO2 and ZnO nanoparticles functionalized by metalloporphyrins. <i>Micro and Nano Systems Letters</i> , 2018 , 6, Development of MEMS Multi-Mode Electrostatic Energy Harvester Based on the SOI Process. <i>Micromachines</i> , 2017 , 8, 51 Simple fabrication method of silicon/tungsten oxide nanowires heterojunction for NO2 gas	3.3	13
58 57	Fabrication and characterization of VOC sensor array based on SnO2 and ZnO nanoparticles functionalized by metalloporphyrins. <i>Micro and Nano Systems Letters</i> , 2018 , 6, Development of MEMS Multi-Mode Electrostatic Energy Harvester Based on the SOI Process. <i>Micromachines</i> , 2017 , 8, 51 Simple fabrication method of silicon/tungsten oxide nanowires heterojunction for NO2 gas sensors. <i>Sensors and Actuators B: Chemical</i> , 2018 , 265, 522-528 Suspended CoPP-ZnO nanorods integrated with micro-heaters for highly sensitive VOC detection.	3·3 8.5	13
58 57 56	Fabrication and characterization of VOC sensor array based on SnO2 and ZnO nanoparticles functionalized by metalloporphyrins. <i>Micro and Nano Systems Letters</i> , 2018 , 6, Development of MEMS Multi-Mode Electrostatic Energy Harvester Based on the SOI Process. <i>Micromachines</i> , 2017 , 8, 51 Simple fabrication method of silicon/tungsten oxide nanowires heterojunction for NO2 gas sensors. <i>Sensors and Actuators B: Chemical</i> , 2018 , 265, 522-528 Suspended CoPP-ZnO nanorods integrated with micro-heaters for highly sensitive VOC detection. <i>Sensors and Actuators B: Chemical</i> , 2018 , 264, 249-254 Polymer-based flexible and multi-directional tactile sensor with multiple NiCr piezoresistors. <i>Micro</i>	3.3 8.5 8.5	13 13

52	Improved photo- and chemical-responses of graphene via porphyrin-functionalization for flexible, transparent, and sensitive sensors. <i>Nanotechnology</i> , 2019 , 30, 215501	3.4	11
51	Humidity-resistant triboelectric energy harvester using electrospun PVDF/PU nanofibers for flexibility and air permeability. <i>Nanotechnology</i> , 2019 , 30, 275401	3.4	11
50	Sensitivity enhancement in photoionization detector using microelectrodes with integrated 1D nanostructures. <i>Sensors and Actuators B: Chemical</i> , 2019 , 288, 618-624	8.5	11
49	Widely Tunable Variable Capacitor With Switching and Latching Mechanisms. <i>IEEE Electron Device Letters</i> , 2015 , 36, 186-188	4.4	11
48	Humidity sensing characteristics of focused ion beam-induced suspended single tungsten nanowire. <i>Sensors and Actuators B: Chemical</i> , 2014 , 194, 38-44	8.5	10
47	Using confined self-adjusting carbon nanotube arrays as high-sensitivity displacement sensing element. ACS Applied Materials & amp; Interfaces, 2014, 6, 10181-7	9.5	9
46	Piezoelectric and electromagnetic hybrid energy harvester using two cantilevers for frequency up-conversion 2017 ,		8
45	Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction. <i>Scientific Reports</i> , 2015 , 5, 18265	4.9	8
44	Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms. <i>International Journal of Precision Engineering and Manufacturing - Green Technology</i> ,1	3.8	8
43	Fabrication of suspended nanowires for highly sensitive gas sensing. <i>Sensors and Actuators B: Chemical</i> , 2019 , 284, 362-368	8.5	8
42	Investigation of interfacial adhesion between the top ends of carbon nanotubes. <i>ACS Applied Materials & ACS Applied</i> Materials & Material	9.5	7
41	Large-Area, Crosstalk-Free, Flexible Tactile Sensor Matrix Pixelated by Mesh Layers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 12259-12267	9.5	7
40	Fabrication and characterization of monolithic piezoresistive high-g three-axis accelerometer. <i>Micro and Nano Systems Letters</i> , 2017 , 5,	2	6
39	Detection of Mixed BTEX With Suppressed Reaction Specificity Using Tin Oxide Nanoparticles Functionalized by Multi-Metalloporphyrins. <i>IEEE Sensors Journal</i> , 2019 , 19, 11791-11796	4	6
38	Integration of a Carbon Nanotube Network on a Microelectromechanical Switch for Ultralong Contact Lifetime. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 18617-18625	9.5	5
37	Development and performance test of a ZnO nanowire charger for measurements of nano-aerosol particles. <i>Sensors and Actuators A: Physical</i> , 2015 , 222, 1-7	3.9	5
36	Resonant-frequency tuning of angular vertical comb-driven microscanner. <i>Micro and Nano Systems Letters</i> , 2014 , 2,	2	5
35	Synthesis and bidirectional frequency tuning of cantilever-shape nano resonators using a focused ion beam. <i>ACS Applied Materials & District Sciences</i> , 2013, 5, 9684-90	9.5	5

(2021-2017)

34	Highly sensitive detection of VOC using impact ionization induced by photoelectron 2017,		4
33	Carbon-Doped WO3 Nanostructure Based on CNT Sacrificial Template and its Application to Highly Sensitive NO2 Sensor. <i>IEEE Sensors Journal</i> , 2020 , 20, 5705-5711	4	4
32	Highly sensitive cantilever type chemo-mechanical hydrogen sensor based on contact resistance of self-adjusted carbon nanotube arrays. <i>Sensors and Actuators B: Chemical</i> , 2014 , 197, 414-421	8.5	4
31	Acid-sensitive pH sensor using electrolysis and a microfluidic channel for read-out amplification. <i>RSC Advances</i> , 2014 , 4, 39634	3.7	3
30	Scalable and number-controlled synthesis of carbon nanotubes by nanostencil lithography. <i>Nanoscale Research Letters</i> , 2013 , 8, 281	5	3
29	Site-specific growth and density control of carbon nanotubes by direct deposition of catalytic nanoparticles generated by spark discharge. <i>Nanoscale Research Letters</i> , 2013 , 8, 409	5	3
28	Fabrication of carbon nanotube-coated fabric for highly sensitive pressure sensor 2017,		3
27	Defective carbon nanotube-silicon heterojunctions for photodetector and chemical sensor with improved responses. <i>Journal of Micromechanics and Microengineering</i> , 2015 , 25, 115004	2	3
26	Highly Sensitive Flexible Tactile Sensors in Wide Sensing Range Enabled by Hierarchical Topography of Biaxially Strained and Capillary-Densified Carbon Nanotube Bundles. <i>Small</i> , 2021 , 17, e2105334	11	3
25	Patterned Carbon Nanotube Bundles as Stretchable Strain Sensors for Human Motion Detection. <i>ACS Applied Nano Materials</i> , 2020 , 3, 11408-11415	5.6	3
24	All Paper-Based, Multilayered, Inkjet-Printed Tactile Sensor in Wide Pressure Detection Range with High Sensitivity. <i>Advanced Materials Technologies</i> ,2100428	6.8	3
23	Carbon nanotubes network contact lubrication for highly reliable MEMS switch 2017,		2
22	Flexible piezoelectric strain energy harvester responsive to multi-directional input forces and its application to self-powered motion sensor 2017 ,		2
21	Low-voltage and low-power field-ionization gas sensor based on micro-gap between suspended silver nanowires electrodes for toluene detection 2017 ,		2
20	Crosstalk-Free Mesh-Embedded Tactile Sensor Array with Electrically Isolated Sensing Cells 2020 ,		2
19	Micromachined Resonant Frequency Tuning Unit for Torsional Resonator. <i>Micromachines</i> , 2017 , 8,	3.3	2
18	Wind-powered triboelectric energy harvester using curved flapping film array 2017,		2
17	Three-Dimensional Axotomy and Regeneration on Open-Access Microfluidic Platform <i>IEEE Transactions on Nanobioscience</i> , 2021 , PP,	3.4	2

16	Triboelectric energy harvester using frequency up-conversion to generate from extremely low frequency strain inputs 2017 ,		1
15	CoPP-Functionalized TIO2 Nanoparticles for Highly Sensitive and Reliable VOC Detection 2019,		1
14	Impact Ionization Induced by Accelerated Photoelectrons for Wide-Range and Highly Sensitive Detection of Volatile Organic Compounds at Room Temperature. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 20491-20499	9.5	1
13	Miniaturized VOC Detectors for Monitoring Indoor Air Quality. <i>KAIST Research Series</i> , 2015 , 171-188		1
12	Self-Powered Wind Sensor Based on Triboelectric Generator with Curved Flap Array for Multi-Directional Wind Speed Detection 2020 ,		1
11	WO3-MoS2 Mixture-Based Gas Sensor for NO2 Detection at Room Temperature 2019 ,		1
10	Development of a Highly Stretchable Strain Sensor Based on Patterned and Rolled Carbon Nanotubes 2019 ,		1
9	A Textile-Based Resistive Tactile Sensor with High Sensitivity in a Wide Pressure Range 2019 ,		1
8	Transparent and flexible toluene sensor with enhanced sensitivity using adsorption catalyst-functionalized graphene 2013 ,		1
7	Flexible and transparent NO2 sensor using functionalized MoS2 with light-enhanced response 2017 ,		1
6	Reversible and continuous latching using a carbon internanotube interface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 7465-9	9.5	1
5	Integration of Gold Nanoparticle-Carbon Nanotube Composite for Enhanced Contact Lifetime of Microelectromechanical Switches with Very Low Contact Resistance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 16959-16967	9.5	O
4	Fabrication of a nitric oxide gas sensor using microwires and basic research for its application. <i>Korean Journal of Clinical Oncology</i> , 2013 , 9, 109-114	0.1	
3	Resonant Frequency Tuning of Torsional Microscanner using MEMS actuator. <i>Transactions of the Society of Information Storage Systems</i> , 2014 , 10, 23-26		
2	Adhesion between Carbon Nanotube Arrays with Different Contact Area Measured Using Microactuator. <i>Transactions of the Society of Information Storage Systems</i> , 2014 , 10, 14-18		
1	Detection of volatile organic compounds based on low-energy electron scattering according to difference in collisional cross-section. <i>Sensors and Actuators B: Chemical</i> , 2020 , 323, 128706	8.5	