Miguel Andrés HernÃ;ndez RodrÃ-gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9304678/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic use of Raman and photoluminescence signals for optical thermometry with large temperature sensitivity. Physica B: Condensed Matter, 2022, 626, 413455.	1.3	4
2	Reprogrammable and Reconfigurable Photonic Molecular Logic Gates Based on Ln ³⁺ Ions. Advanced Optical Materials, 2022, 10, .	3.6	6
3	Optical Temperature Sensor Capabilities of the Green Upconverted Luminescence of Er3+ in La3NbO7 Ceramic Powders. Crystals, 2022, 12, 455.	1.0	3
4	A perspective on sustainable luminescent solar concentrators. Journal of Applied Physics, 2022, 131, .	1.1	13
5	Through-space hopping transport in an iodine-doped perylene-based metal–organic framework. Molecular Systems Design and Engineering, 2022, 7, 1065-1072.	1.7	2
6	1000ÂK optical ratiometric thermometer based on Er3+ luminescence in yttrium gallium garnet. Journal of Alloys and Compounds, 2021, 886, 161188.	2.8	12
7	Protein Cohabitation: Improving the Photochemical Stability of R-Phycoerythrin in the Solid State. Journal of Physical Chemistry Letters, 2020, 11, 6249-6255.	2.1	14
8	[Ga 3+ 8 Sm 3+ 2 , Ga 3+ 8 Tb 3+ 2] Metallacrowns are Highly Promising Ratiometric Luminescent Molecular Nanothermometers Operating at Physiologically Relevant Temperatures. Chemistry - A European Journal, 2020, 26, 13792-13796.	1.7	12
9	Molecular Logic Devices: Lanthanide Luminescence to Mimic Molecular Logic and Computing through Physical Inputs (Advanced Optical Materials 12/2020). Advanced Optical Materials, 2020, 8, 2070050.	3.6	1
10	Lanthanide Luminescence to Mimic Molecular Logic and Computing through Physical Inputs. Advanced Optical Materials, 2020, 8, 2000312.	3.6	20
11	Bi-functional carbon-based catalysts for unitized regenerative fuel cells. Journal of Catalysis, 2020, 387, 138-144.	3.1	14
12	Upconversion and luminescence temperature sensitivity of Er3+ ions in yttrium oxysulfate nanophosphor. Optical Materials, 2019, 95, 109197.	1.7	15
13	High pressure luminescence of Nd3+ in YAlO3 perovskite nanocrystals: A crystal-field analysis. Journal of Chemical Physics, 2018, 148, 044201.	1.2	21
14	High pressure sensitivity of anti-Stokes fluorescence in Nd3+ doped yttrium orthoaluminate nano-perovskites. Journal of Luminescence, 2018, 196, 20-24.	1.5	5
15	Carbon dots as temperature nanosensors in the physiological range. Journal of Luminescence, 2018, 196, 313-315.	1.5	18
16	Comparison of the sensitivity as optical temperature sensor of nano-perovskite doped with Nd3+ ions in the first and second biological windows. Sensors and Actuators B: Chemical, 2018, 255, 970-976.	4.0	110
17	Lanthanide-doped Y3Ga5O12 garnets for nanoheating and nanothermometry in the first biological window. Optical Materials, 2018, 84, 46-51.	1.7	25
18	Analysis of the upconversion emission of yttrium orthoaluminate nano-perovskite co-doped with Er3+/Yb3+ ions for thermal sensing applications. Journal of Luminescence, 2018, 202, 316-321.	1.5	14

MIGUEL ANDRÃOS HERNÃINDEZ

#	Article	IF	CITATIONS
19	Nanoperovskite doped with Yb3+ and Tm3+ ions used as an optical upconversion temperature sensor. Optical Materials, 2018, 83, 187-191.	1.7	9
20	Spectroscopic properties of Nd 3+ ions in YAP nano-perovskites. Journal of Luminescence, 2017, 188, 204-208.	1.5	9
21	Er3+-doped tellurite glasses for enhancing a solar cell photocurrent through photon upconversion upon 1500Ânm excitation. Materials Chemistry and Physics, 2017, 199, 67-72.	2.0	49
22	Structural, Vibrational, and Elastic Properties of Yttrium Orthoaluminate Nanoperovskite at High Pressures. Journal of Physical Chemistry C, 2017, 121, 15353-15367.	1.5	13
23	Liquid whispering-gallery-mode resonator as a humidity sensor. Optics Express, 2017, 25, 1165.	1.7	38
24	Yttrium orthoaluminate nanoperovskite doped with Tm^3+ ions as upconversion optical temperature sensor in the near-infrared region. Optics Express, 2017, 25, 27845.	1.7	22
25	Blue up-conversion emission of Yb3+-doped langbeinite salts. Optical Materials, 2016, 53, 190-194.	1.7	13
26	Synthesis, structural characterization and optical study of Dy 3+ -doped langbeinite salts. Journal of Luminescence, 2016, 177, 160-165.	1.5	12
27	Synthesis, characterization and spectroscopic properties of a new Nd 3+ -doped Co-picromerite-type Tutton salt. Journal of Luminescence, 2016, 177, 93-98.	1.5	14
28	Carbon supported Ag and Ag–Co catalysts tolerant to methanol and ethanol for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2016, 41, 19789-19798.	3.8	38
29	Chemical pressure effects on the spectroscopic properties of Nd^3+-doped gallium nano-garnets. Optical Materials Express, 2015, 5, 1661.	1.6	34
30	Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480nm. Solar Energy Materials and Solar Cells, 2013, 116, 171-175.	3.0	44