Masanari Itokawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9304472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of glyoxalase 1 in methylglyoxal detoxification–the broad player of psychiatric disorders. Redox Biology, 2022, 49, 102222.	3.9	9
2	Schizophrenia-Mimicking Layers Outperform Conventional Neural Network Layers. Frontiers in Neurorobotics, 2022, 16, 851471.	1.6	1
3	Role of advanced glycation end products in the longitudinal association between muscular strength and psychotic symptoms among adolescents. NPJ Schizophrenia, 2022, 8, .	2.0	1
4	Exonic deletions in IMMP2L in schizophrenia with enhanced glycation stress subtype. PLoS ONE, 2022, 17, e0270506.	1.1	1
5	Structural diverseness of neurons between brain areas and between cases. Translational Psychiatry, 2021, 11, 49.	2.4	6
6	Cooperation of LIM domainâ€binding 2 (LDB2) with EGR in the pathogenesis of schizophrenia. EMBO Molecular Medicine, 2021, 13, e12574.	3.3	2
7	Advanced glycation end products and cognitive impairment in schizophrenia. PLoS ONE, 2021, 16, e0251283.	1.1	6
8	Dysregulation of post-transcriptional modification by copy number variable microRNAs in schizophrenia with enhanced glycation stress. Translational Psychiatry, 2021, 11, 331.	2.4	7
9	Vitamin B6 deficiency hyperactivates the noradrenergic system, leading to social deficits and cognitive impairment. Translational Psychiatry, 2021, 11, 262.	2.4	16
10	Brain capillary structures of schizophrenia cases and controls show a correlation with their neuron structures. Scientific Reports, 2021, 11, 11768.	1.6	15
11	Fingertip advanced glycation end products and psychotic symptoms among adolescents. NPJ Schizophrenia, 2021, 7, 37.	2.0	6
12	Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biology, 2021, 45, 102057.	3.9	12
13	High-sucrose diets contribute to brain angiopathy with impaired glucose uptake and psychosis-related higher brain dysfunctions in mice. Science Advances, 2021, 7, eabl6077.	4.7	12
14	Cuttingâ€edge morphological studies of postâ€mortem brains of patients with schizophrenia and potential applications of Xâ€ray nanotomography (nano T). Psychiatry and Clinical Neurosciences, 2020, 74, 176-182.	1.0	6
15	The accumulation of advanced glycation end-products in a schizophrenic patient with a glyoxalase 1 frameshift mutation: An autopsy study. Schizophrenia Research, 2020, 223, 356-358.	1.1	3
16	Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. EBioMedicine, 2020, 62, 103130.	2.7	19
17	Enhanced carbonyl stress and disrupted white matter integrity in schizophrenia. Schizophrenia Research, 2020, 223, 242-248.	1.1	9
18	LDB2 locus disruption on 4p16.1 as a risk factor for schizophrenia and bipolar disorder. Human Genome Variation, 2020, 7, 31.	0.4	1

Masanari Itokawa

#	Article	IF	CITATIONS
19	Nanometer-Scale Structures of Neurons Differ Between Individuals and Those Differences Become Extraordinary in Schizophrenia. Microscopy and Microanalysis, 2019, 25, 1344-1345.	0.2	0
20	Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology. EMBO Molecular Medicine, 2019, 11, e10695.	3.3	47
21	Three-dimensional alteration of neurites in schizophrenia. Translational Psychiatry, 2019, 9, 85.	2.4	28
22	Pyridoxamine: A novel treatment for schizophrenia with enhanced carbonyl stress. Psychiatry and Clinical Neurosciences, 2018, 72, 35-44.	1.0	40
23	Music-evoked emotions in schizophrenia. Schizophrenia Research, 2017, 185, 144-147.	1.1	10
24	The regulation of soluble receptor for AGEs contributes to carbonyl stress in schizophrenia. Biochemical and Biophysical Research Communications, 2016, 479, 447-452.	1.0	14
25	A method for estimating spatial resolution of real image in the Fourier domain. Journal of Microscopy, 2016, 261, 57-66.	0.8	45
26	Advanced glycation end products and schizophrenia: A systematic review. Journal of Psychiatric Research, 2015, 66-67, 112-117.	1.5	43
27	Genetic analysis of the glyoxalase system in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 59, 105-110.	2.5	12
28	Characterization of modified proteins in plasma from a subtype of schizophrenia based on carbonyl stress: Protein carbonyl is a possible biomarker of psychiatric disorders. Biochemical and Biophysical Research Communications, 2015, 467, 361-366.	1.0	14
29	Clinical Features of Schizophrenia With Enhanced Carbonyl Stress. Schizophrenia Bulletin, 2014, 40, 1040-1046.	2.3	56
30	Carbonyl stress in schizophrenia. Biochemical Society Transactions, 2014, 42, 468-472.	1.6	9
31	Replication of enhanced carbonyl stress in a subpopulation of schizophrenia. Psychiatry and Clinical Neurosciences, 2014, 68, 83-84.	1.0	20
32	Carbonyl stress and schizophrenia. Psychiatry and Clinical Neurosciences, 2014, 68, 655-665.	1.0	29
33	Brain and Mind. Kagaku Tetsugaku, 2014, 47, 53-68.	0.1	Ο
34	Replication in a Japanese population that a MIR30E gene variation is associated with schizophrenia. Schizophrenia Research, 2013, 150, 596-597.	1.1	9
35	Volume reductions in frontopolar and left perisylvian cortices in methamphetamine induced psychosis. Schizophrenia Research, 2013, 147, 355-361.	1.1	36
36	Schizophrenia: Maternal inheritance and heteroplasmy of mtDNA mutations. Molecular Genetics and Metabolism, 2012, 105, 103-109.	0.5	15

MASANARI ITOKAWA

#	Article	IF	CITATIONS
37	Paradox of schizophrenia genetics: is a paradigm shift occurring?. Behavioral and Brain Functions, 2012, 8, 28.	1.4	6
38	A two-stage case–control association study between the tryptophan hydroxylase 2 (TPH2) gene and schizophrenia in a Japanese population. Schizophrenia Research, 2012, 137, 264-266.	1.1	4
39	A case of schizophrenia successfully treated by m-ECT using â€~long' brief pulse. International Journal of Case Reports and Images, 2012, 3, 30.	0.0	2
40	Reduced amygdala and hippocampal volumes in patients with methamphetamine psychosis. Schizophrenia Research, 2011, 132, 183-189.	1.1	58
41	Investigation of pathophysiology of schizophrenia associated with carbonyl stress. Neuroscience Research, 2011, 71, e106.	1.0	0
42	Idiopathic carbonyl stress in a drugâ€naive case of atâ€risk mental state. Psychiatry and Clinical Neurosciences, 2011, 65, 606-607.	1.0	9
43	Enhanced Carbonyl Stress in a Subpopulation of Schizophrenia. Archives of General Psychiatry, 2010, 67, 589.	13.8	141
44	Supportive Evidence for Reduced Expression of GNB1L in Schizophrenia. Schizophrenia Bulletin, 2010, 36, 756-765.	2.3	23
45	Failure to find an association between myosin heavy chain 9, non-muscle (MYH9) and schizophrenia: A three-stage case–control association study. Schizophrenia Research, 2010, 118, 106-112.	1.1	5
46	The dopamine D3 receptor (DRD3) gene and risk of schizophrenia: Case–control studies and an updated meta-analysis. Schizophrenia Research, 2010, 116, 61-67.	1.1	40
47	A hard road in psychiatric genetics: schizophrenia and DPYSL2. Journal of Human Genetics, 2010, 55, 397-399.	1.1	5
48	Differentiation of first-episode schizophrenia patients from healthy controls using ROI-based multiple structural brain variables. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 10-17.	2.5	37
49	Replication study of association between ADCYAP1 gene polymorphisms and schizophrenia. Psychiatric Genetics, 2010, 20, 123-125.	0.6	15
50	Persistence Criteria for Susceptibility Genes for Schizophrenia: a Discussion from an Evolutionary Viewpoint. PLoS ONE, 2009, 4, e7799.	1.1	22
51	A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophrenia Research, 2008, 101, 9-16.	1.1	59
52	Replication study for associations between polymorphisms in the CLDN5 and DGCR2 genes in the 22q11 deletion syndrome region and schizophrenia. Psychiatric Genetics, 2008, 18, 255-256.	0.6	11
53	A resistance gene in disguise for schizophrenia?. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 165-173.	1.1	4
54	Identification of a male schizophrenic patient carrying a de novo balanced translocation, t(4; 13)(p16.1;) Tj ETC)q0 0 0 rgB	T /Overlock 1

4

#	Article	IF	CITATIONS
55	A microsatellite repeat in the promoter of the N-methyl-d-aspartate receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia. Pharmacogenetics and Genomics, 2003, 13, 271-278.	5.7	94

56 Impact of Epidemiology on Molecular Genetics of Schizophrenia. , 0, , .

0