Dan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9304403/publications.pdf

Version: 2024-02-01

331670 265206 1,831 42 43 21 citations h-index g-index papers 44 44 44 1869 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Integration of transcriptomic and proteomic analyses of cold shock response in Kosmotoga olearia, a typical thermophile with an incredible minimum growth temperature at 20°C. Brazilian Journal of Microbiology, 2022, 53, 71.	2.0	O
2	Chemical-switching strategy for the production of green biofuel on NiCo/MCM-41 catalysts by tuning atmosphere. Fuel, 2022, 315, 123118.	6.4	6
3	Bimetallic Ni and Mo Nitride as an Efficient Catalyst for Hydrodeoxygenation of Palmitic Acid. ACS Catalysis, 2022, 12, 4333-4343.	11.2	25
4	Overturning CO ₂ Hydrogenation Selectivity with High Activity via Reaction-Induced Strong Metal–Support Interactions. Journal of the American Chemical Society, 2022, 144, 4874-4882.	13.7	139
5	Molybdenum carbide as catalyst in biomass derivatives conversion. Journal of Energy Chemistry, 2022, 73, 68-87.	12.9	10
6	Efficiency conversion of jatropha oil into high-quality biofuel over the innovative Ni-Mo2N based catalyst. Fuel, 2022, 324, 124548.	6.4	9
7	Mechanism Insight into Catalytic Performance of Ni12P5 over Ni2P toward the Catalytic Deoxygenation of Butyric Acid. Catalysts, 2022, 12, 569.	3.5	1
8	Unraveling the SO ₂ Poisoning Effect over the Lifetime of MeO _{<i>x</i>} (Me =) Tj ETQqO with Surface Species. Journal of Physical Chemistry C, 2022, 126, 12168-12177.	0 0 rgBT 3.1	Overlock 10
9	One-step synthesis of highly active and stable Ni-ZrO2 catalysts for the conversion of methyl laurate to alkanes. Journal of Catalysis, 2022, 413, 297-310.	6.2	20
10	The effect of support on nickel phosphide catalysts for one-pot conversion of jatropha oil into high grade hydrocarbons. Catalysis Today, 2021, 367, 83-94.	4.4	15
11	Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO 2 Nanocrystals. Angewandte Chemie, 2021, 133, 6225-6234.	2.0	7
12	Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO ₂ Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 6160-6169.	13.8	52
13	Theoretical insight into the deoxygenation molecular mechanism of butyric acid catalyzed by a Ni ₁₂ P ₆ cluster. Catalysis Science and Technology, 2021, 11, 6425-6437.	4.1	2
14	Structure Sensitivity of Au‶iO ₂ Strong Metal–Support Interactions. Angewandte Chemie - International Edition, 2021, 60, 12074-12081.	13.8	161
15	Structure Sensitivity of Auâ€TiO 2 Strong Metal–Support Interactions. Angewandte Chemie, 2021, 133, 12181-12188.	2.0	11
16	The Deoxygenation of Jatropha Oil to High Quality Fuel via the Synergistic Catalytic Effect of Ni, W2C and WC Species. Catalysts, 2021, 11, 469.	3.5	6
17	Abscisic acid receptors are involves in the Jasmonate signaling in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2021, 16, 1948243.	2.4	10
18	Corrosion of Iron-Nickel Foam to In Situ Fabricate Amorphous FeNi (Oxy)hydroxide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 8791-8800.	5.1	17

#	Article	IF	CITATIONS
19	Efficient catalytic conversion of jatropha oil to high grade biofuel on Ni-Mo2C/MCM-41 catalysts with tuned surface properties. Journal of Energy Chemistry, 2021, 61, 425-435.	12.9	19
20	Unraveling enhanced activity and coke resistance of Pt-based catalyst in bio-aviation fuel refining. Applied Energy, 2021, 301, 117469.	10.1	28
21	Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nature Communications, 2021, 12, 5921.	12.8	33
22	Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. Chemosphere, 2020, 239, 124706.	8.2	50
23	A rapid, adaptative DNA biosensor based on molecular beacon-concatenated dual signal amplification strategies for ultrasensitive detection of p53 gene and cancer cells. Talanta, 2020, 210, 120638.	5.5	23
24	Ni–Fe Catalysts Supported on γ-Al ₂ O ₃ /HZSM-5 for Transformation of Palmitic Acid into Hydrocarbon Fuel. Industrial & Damp; Engineering Chemistry Research, 2020, 59, 17373-17386.	3.7	28
25	Size-Dependent Structures and Catalytic Performances of Au/TiO ₂ -{001} Catalysts for Propene Epoxidation. Journal of Physical Chemistry C, 2020, 124, 15264-15274.	3.1	8
26	A self-assembly based on a hydrogel interface: facile, rapid, and large-scale preparation of colloidal photonic crystals. Materials Chemistry Frontiers, 2020, 4, 2409-2417.	5.9	3
27	Transformation of Jatropha Oil into High-Quality Biofuel over Ni–W Bimetallic Catalysts. ACS Omega, 2019, 4, 10580-10592.	3.5	22
28	Methanol Partial Oxidation Over Shaped Silver Nanoparticles Derived from Cubic and Octahedral Ag2O Nanocrystals. Catalysis Letters, 2019, 149, 2482-2491.	2.6	8
29	Morphologieâ€optimierte hochaktive und â€stabile Ru/TiO ₂ â€Katalysatoren fÃ⅓r die selektive COâ€Methanisierung. Angewandte Chemie, 2019, 131, 10842-10847.	2.0	7
30	Morphologyâ€Engineered Highly Active and Stable Ru/TiO ₂ Catalysts for Selective CO Methanation. Angewandte Chemie - International Edition, 2019, 58, 10732-10736.	13.8	81
31	Morphology-Dependent Evolutions of Sizes, Structures, and Catalytic Activity of Au Nanoparticles on Anatase TiO ₂ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 10367-10376.	3.1	39
32	The Conversion of Jatropha Oil into Jet Fuel on NiMo/Alâ€MCMâ€41 Catalyst: Intrinsic Synergic Effects between Ni and Mo. Energy Technology, 2019, 7, 1800809.	3.8	23
33	Controlling the growth of activated carbon supported nickel phosphide catalysts via adjustment of surface group distribution for hydrodeoxygenation of palmitic acid. Catalysis Today, 2019, 319, 182-190.	4.4	24
34	Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Science of the Total Environment, 2018, 621, 1057-1065.	8.0	100
35	Sizeâ€Dependency of Gold Nanoparticles on TiO ₂ for CO Oxidation. Small Methods, 2018, 2, 1800273.	8.6	16
36	The Deoxygenation Pathways of Palmitic Acid into Hydrocarbons on Silica-Supported Ni12P5 and Ni2P Catalysts. Catalysts, 2018, 8, 153.	3.5	28

#	Article	IF	Citations
37	Reaction Sensitivity of Ceria Morphology Effect on Ni/CeO ₂ Catalysis in Propane Oxidation Reactions. ACS Applied Materials & Interfaces, 2017, 9, 35897-35907.	8.0	105
38	Probing Surface Structures of CeO ₂ , TiO ₂ , and Cu ₂ O Nanocrystals with CO and CO ₂ Chemisorption. Journal of Physical Chemistry C, 2016, 120, 21472-21485.	3.1	143
39	Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Applied Catalysis B: Environmental, 2016, 187, 375-385.	20.2	113
40	Recent advances for the production of hydrocarbon biofuel via deoxygenation progress. Science Bulletin, 2015, 60, 2096-2106.	9.0	27
41	The production of diesel-like hydrocarbons from palmitic acid over HZSM-22 supported nickel phosphide catalysts. Applied Catalysis B: Environmental, 2015, 174-175, 504-514.	20.2	76
42	Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. Journal of Catalysis, 2012, 294, 184-198.	6.2	214
43	The Remarkable Enhancement of COâ€Pretreated CuOMn ₂ O ₃ Supported Catalyst for the Reduction of NO with CO: The Formation of Surface Synergetic Oxygen Vacancy. Chemistry - A European lournal. 2011. 17. 5668-5679.	3.3	109