List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9303105/publications.pdf Version: 2024-02-01

YOSHIHADII KIMIIDA

#	Article	IF	CITATIONS
1	A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351, 1196-1199.	6.0	1,773
2	Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polymer International, 2006, 55, 626-642.	1.6	408
3	Biodegradation of PET: Current Status and Application Aspects. ACS Catalysis, 2019, 9, 4089-4105.	5.5	349
4	Melt polycondensation ofL-lactic acid with Sn(II) catalysts activated by various proton acids: A direct manufacturing route to high molecular weight Poly(L-lactic acid). Journal of Polymer Science Part A, 2000, 38, 1673-1679.	2.5	212
5	Controlled crystal nucleation in the melt-crystallization of poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Polymer, 2003, 44, 5635-5641.	1.8	177
6	Novel Thermo-Responsive Formation of a Hydrogel by Stereo-Complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA Block Copolymers. Macromolecular Bioscience, 2001, 1, 204-208.	2.1	165
7	Stereocomplex formation between enantiomeric poly(lactic acid). VIII. Complex fibers spun from mixed solution of poly(D-lactic acid) and poly(L-lactic acid). Journal of Applied Polymer Science, 1994, 51, 337-344.	1.3	146
8	Stereoblock Polylactides as High-Performance Bio-Based Polymers. Polymer Reviews, 2009, 49, 107-140.	5.3	142
9	Properties and Biodegradability of Polymer Blends of Poly(L-lactide)s with Different Optical Purity of the Lactate Units. Macromolecular Materials and Engineering, 2002, 287, 116-121.	1.7	132
10	Tissue-engineered acellular small diameter long-bypass grafts withÂneointima-inducing activity. Biomaterials, 2015, 58, 54-62.	5.7	127
11	Application of silica-containing nano-composite emulsion to wall paint: A new environmentally safe paint of high performance. Progress in Organic Coatings, 2006, 55, 276-283.	1.9	123
12	Synthesis and damage specificity of a novel probe for the detection of abasic sites in DNA. Biochemistry, 1993, 32, 8276-8283.	1.2	122
13	Higher-order structures and mechanical properties of stereocomplex-type poly(lactic acid) melt spun fibers. Polymer, 2006, 47, 5965-5972.	1.8	117
14	11B n.m.r. study on the reaction of poly(vinyl alcohol) with boric acid. Polymer, 1988, 29, 336-340.	1.8	115
15	Enhanced Stereocomplex Formation of Poly(L-lactic acid) and Poly(D-lactic acid) in the Presence of Stereoblock Poly(lactic acid). Macromolecular Bioscience, 2007, 7, 829-835.	2.1	114
16	An efficient solidâ€state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight. Journal of Polymer Science Part A, 2008, 46, 3714-3722.	2.5	111
17	Stereoblock Poly(lactic acid): Synthesis via Solid-State Polycondensation of a Stereocomplexed Mixture of Poly(L-lactic acid) and Poly(D-lactic acid). Macromolecular Bioscience, 2005, 5, 21-29.	2.1	106
18	alphaDeoxyadenosine, a Major Anoxic Radiolysis Product of Adenine in DNA, Is a Substrate for. Escherichia coli Endonuclease IV. Biochemistry, 1994, 33, 7842-7847.	1.2	102

#	Article	IF	CITATIONS
19	Microstructure and Thermal Properties of Polylactides with Different L- and D-Unit Sequences: Importance of the Helical Nature of the L-Sequenced Segments. Macromolecular Materials and Engineering, 2003, 288, 137-143.	1.7	99
20	Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions. Polymer, 2008, 49, 2656-2661.	1.8	99
21	Linear type azo-containing polyurethane as drug-coating material for colon-specific delivery: its properties, degradation behavior, and utilization for drug formulation. Journal of Controlled Release, 2000, 66, 187-197.	4.8	98
22	Production ofD-Lactic Acid by Bacterial Fermentation of Rice Starch. Macromolecular Bioscience, 2004, 4, 1021-1027.	2.1	95
23	Synthesis and Properties of High-Molecular-Weight Poly(L-Lactic Acid) by Melt/Solid Polycondensation under Different Reaction Conditions. High Performance Polymers, 2001, 13, S189-S196.	0.8	94
24	Synthesis and Characterization of Stereoblock Poly(lactic acid)s with Nonequivalent D/L Sequence Ratios. Macromolecules, 2007, 40, 3049-3055.	2.2	84
25	Melt polycondensation ofL-lactic acid to poly(L-lactic acid) with Sn(II) catalysts combined with various metal alkoxides. Polymer International, 2003, 52, 299-303.	1.6	81
26	Induced Crystallization of PLLA in the Presence of 1,3,5â€Benzenetricarboxylamide Derivatives as Nucleators: Preparation of Hazeâ€Free Crystalline PLLA Materials. Macromolecular Materials and Engineering, 2010, 295, 460-468.	1.7	79
27	Microvoid formation process during the plastic deformation of β-form polypropylene. Polymer, 1994, 35, 3442-3448.	1.8	78
28	Crystal transformation and micropore formation during uniaxial drawing of β-form polypropylene film. Polymer, 1995, 36, 2523-2530.	1.8	78
29	Microbial production of poly(hydroxyalkanoate)s from waste edible oils. Green Chemistry, 2003, 5, 545-548.	4.6	78
30	Stepwise Assembly of Enantiomeric Poly(lactide)s on Surfaces. Macromolecules, 2001, 34, 1996-2001.	2.2	77
31	Copolymerization of 3-(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione and l-lactide: a facile synthetic method for functionalized bioabsorbable polymer. Polymer, 1993, 34, 1741-1748.	1.8	75
32	Structure and gas permeability of microporous films prepared by biaxial drawing of β-form polypropylene. Polymer, 1996, 37, 573-579.	1.8	75
33	Hydrogel Formation between Enantiomeric B-A-B-Type Block Copolymers of Polylactides(PLLA or PDLA:) Tj ETQq1 361-367.	1 0.7843 2.1	14 rgBT /Ove 70
34	Molecular, Structural, and Material Design of Bio-Based Polymers. Polymer Journal, 2009, 41, 797-807.	1.3	70
35	Synthesis and properties of highâ€molecularâ€weight stereo diâ€block polylactides with nonequivalent D/L ratios. Journal of Polymer Science Part A, 2010, 48, 794-801.	2.5	70
36	Synthesis and properties of malic acid-containing functional polymers. International Journal of Biological Macromolecules, 1999, 25, 265-271.	3.6	68

#	Article	IF	CITATIONS
37	Reaction Mechanism of Enzymatic Degradation of Poly(butylene succinate-co-terephthalate) (PBST) with a Lipase Originated from Pseudomonas cepacia. Macromolecular Bioscience, 2003, 3, 189-197.	2.1	67
38	Biodegradation of waste <scp>PET</scp> . EMBO Reports, 2019, 20, e49365.	2.0	66
39	Solid-State Postpolymerization ofl-Lactide Promoted by Crystallization of Product Polymer:Â An Effective Method for Reduction of Remaining Monomer. Macromolecules, 1997, 30, 6438-6444.	2.2	63
40	Self-Organization of Diblock and Triblock Copolymers of Poly(l-lactide) and Poly(oxyethylene) into Nanostructured Bands and Their Network System. Proposition of a Doubly Twisted Chain Conformation of Poly(l-lactide). Macromolecules, 2001, 34, 4043-4050.	2.2	61
41	Mechanical and Thermal Properties of Poly(L-lactide) Incorporating Various Inorganic Fillers with Particle and Whisker Shapes. Macromolecular Materials and Engineering, 2003, 288, 562-568.	1.7	61
42	Protecting-Group-Free Synthesis of Glycopolymers Bearing Sialyloligosaccharide and Their High Binding with the Influenza Virus. ACS Macro Letters, 2014, 3, 1074-1078.	2.3	60
43	Microstructure and Thermomechanical Properties of Glassy Polylactides with Different Optical Purity of the Lactate Units. Macromolecular Materials and Engineering, 2001, 286, 705.	1.7	59
44	A Novel Synthetic Approach to Stereo-Block Poly(lactic acid). Macromolecular Symposia, 2005, 224, 133-144.	0.4	58
45	Higher order structural analysis of stereocomplex-type poly(lactic acid) melt-spun fibers. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 218-228.	2.4	55
46	Surface and morphological characterization of polysiloxane-block-polyimides. Journal of Polymer Science Part A, 1997, 35, 2239-2251.	2.5	54
47	Macromolecular Organization of Poly(L-lactide)-block-Polyoxyethylene into Bio-Inspired Nano-Architectures. Macromolecular Bioscience, 2002, 2, 11-23.	2.1	52
48	Polymerization via Zwitterion. 14. Alternating Copolymerizations of Cyclic Imino Ethers with Acrylic Acid and with β-Propiolactone. Macromolecules, 1977, 10, 236-239.	2.2	51
49	Electrospinning of Continuous Aligning Yarns with a â€~Funnel' Target. Macromolecular Materials and Engineering, 2010, 295, 660-665.	1.7	48
50	Synthesis of stereo multiblock polylactides by dual terminal couplings of poly-L-lactide and poly-D-lactide prepolymers: A new route to high-performance polylactides. Polymer, 2012, 53, 6053-6062.	1.8	48
51	Response to Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)― Science, 2016, 353, 759-759.	6.0	48
52	Novel adhesion prevention membrane based on a bioresorbable copoly(ester-ether) comprised of poly-L-lactide and Pluronic�:In vitro andin vivo evaluations. Journal of Biomedical Materials Research Part B, 2001, 54, 470-479.	3.0	47
53	Effect of steric hindrance on hydrogen-bonding interaction between polyesters and natural polyphenol catechin. Journal of Applied Polymer Science, 2004, 91, 3565-3573.	1.3	47
54	Efficient formation of stereocomplexes of poly(<scp>L</scp> â€lactide) and poly(<scp>D</scp> â€lactide) by terminal Diels–Alder coupling. Polymer International, 2010, 59, 1526-1530.	1.6	47

#	Article	IF	CITATIONS
55	Polymerization via Betaine. III. Alternating Copolymerization of 2-Oxazoline with Acrylic Acid Involving Proton Transfer of the Acid. Macromolecules, 1974, 7, 139-140.	2.2	46
56	No Catalyst Copolymerization by Spontaneous Initiation Mechanism. Pure and Applied Chemistry, 1976, 48, 307-315.	0.9	46
57	Intriguing morphology transformation due to the macromolecular rearrangement of poly(l -lactide)- block -poly(oxyethylene): from core–shell nanoparticles to band structures via fragments of unimolecular size. Polymer, 2001, 42, 1515-1523.	1.8	45
58	Mechanism of Enzymatic Hydrolysis of Poly(butylene succinate) and Poly(butylene) Tj ETQq0 0 0 rgBT /Overloc 447-455.	α 10 Tf 50 2.1	627 Td (succin 44
59	Influence of .alphaDeoxyadenosine on the Stability and Structure of DNA. Thermodynamic and Molecular Mechanics Studies. Biochemistry, 1995, 34, 6947-6955.	1.2	43
60	Hydrogen-Transfer Polymerization of Acrylic Acid to Poly(β-propiolactone). Macromolecules, 1974, 7, 256-258.	2.2	42
61	Polymerization via Zwitterion. 12. Novel 1:1:1 Alternating Terpolymerizations of 2-Phenyl-1,3,2-dioxaphospholane, Electron Deficient Vinyl Monomers of Acrylonitrile and Acrylate, and Carbon Dioxide. Macromolecules, 1977, 10, 68-72.	2.2	42
62	Synthesis and properties of stereo di- and tri-block polylactides of different block compositions by terminal Diels-Alder coupling of poly-L-lactide and poly-D-lactide prepolymers. Polymer Journal, 2013, 45, 427-435.	1.3	42
63	Polymerization via Betaine. II. Alternating Copolymerization of 2-Oxazoline with \hat{I}^2 -Lactones. Macromolecules, 1974, 7, 1-4.	2.2	40
64	Polymerization via Zwitterion. 9. Alternating Copolymerizations of 2-Phenyl-1,3,2-dioxaphospholane with Electrophilic Monomers of Acrylic Acid, β-Propiolactone, and Acrylamide. Macromolecules, 1976, 9, 724-727.	2.2	38
65	Crystallization-Induced Morphological Changes of a Poly(l-lactide)/Poly(oxyethylene) Diblock Copolymer from Sphere to Band via Disk:Â A Novel Macromolecular Self-Organization Process from Coreâ^`Shell Nanoparticles on Surface. Macromolecules, 2000, 33, 2782-2785.	2.2	38
66	Mechanism of enzymatic degradation of poly(butylene succinate). Macromolecular Research, 2008, 16, 651-658.	1.0	38
67	Alkaline Hydrolysis of Enantiomeric Poly(lactide)s Stereocomplex Deposited on Solid Substrates. Macromolecules, 2003, 36, 1762-1765.	2.2	37
68	Synthesis and Thermomechanical Properties of Stereo Triblock Polylactides With Nonequivalent Block Compositions. Macromolecular Chemistry and Physics, 2012, 213, 695-704.	1.1	37
69	No Catalyst Copolymerization by Spontaneous Initiation. A New Method of Preparation of Alternating Copolymers. Journal of Macromolecular Science Part A, Chemistry, 1975, 9, 641-661.	0.4	36
70	Synthesis and Properties of A–B–A Block Copoly(ester-ethers) Comprising Poly(L-lactide) (A) and Poly(oxypropylene-co-oxyethylene) (B) with Different Molecular Weights. Bulletin of the Chemical Society of Japan, 1996, 69, 1787-1795.	2.0	36
71	Preparation of spherical nanocomposites consisting of silica core and polyacrylate shell by emulsion polymerization. Journal of Applied Polymer Science, 2006, 99, 659-669.	1.3	36
72	A New Formation Process of Poly(phenylsilsesquioxane) in the Hydrolytic Polycondensation of Trichlorophenylsilane. Isolation of Low Molecular Weight Hydrolysates to Form High Molecular Weight Polymers at Mild Reaction Conditions. Polymer Journal, 1997, 29, 678-684.	1.3	34

#	Article	IF	CITATIONS
73	Structural Regularity of Poly(phenylsilsesquioxane) Prepared from the Low Molecular Weight Hydrolysates of Trichlorophenylsilane. Polymer Journal, 1998, 30, 234-242.	1.3	33
74	X-Ray and Electron Diffraction Study of Poly(p-dioxanone). Macromolecular Rapid Communications, 2004, 25, 1943-1947.	2.0	33
75	Fabrication of Aligned Poly(<scp>L</scp> â€lactide) Fibers by Electrospinning and Drawing. Macromolecular Materials and Engineering, 2009, 294, 658-665.	1.7	33
76	Polymerization via Zwitterion. VI. A Novel Alternating Copolymerization of Acrylamide with Cyclic Imino Ethers Involving Proton Transfer of the Amide. Macromolecules, 1975, 8, 374-376.	2.2	32
77	Replication of DNA Templates Containing the .alphaAnomer of Deoxyadenosine, a Major Adenine Lesion Produced by Hydroxyl Radicals. Biochemistry, 1994, 33, 7127-7133.	1.2	32
78	Structural Characterization and Enzymatic Degradation ofα-,β-, andγ-Crystalline Forms for Poly(β-propiolactone). Macromolecular Bioscience, 2003, 3, 462-470.	2.1	32
79	Synthesis of ABCBA Penta Stereoblock Polylactide Copolymers by Two-Step Ring-Opening Polymerization of <scp>l</scp> - and <scp>d</scp> -Lactides with Poly(3-methyl-1,5-pentylene succinate) as Macroinitiator (C): Development of Flexible Stereocomplexed Polylactide Materials. Biomacromolecules, 2013, 14, 2154-2161.	2.6	32
80	Synthesis and Polycondensation of a Cyclic Oligo(phenylsilsesquioxane) as a Model Reaction for the Formation of Poly(silsesquioxane) Ladder Polymer. Polymer Journal, 1998, 30, 730-735.	1.3	31
81	Poly(lactide) Swelling and Melting Behavior in Supercritical Carbon Dioxide and Post-Venting Porous Material. Biomacromolecules, 2005, 6, 2370-2373.	2.6	31
82	Novel melt-processable poly[(acyloxy)aloxane] as alumina precursor. Macromolecules, 1989, 22, 79-85.	2.2	30
83	Strengthening of hydrogels made from enantiomeric block copolymers of polylactide (PLA) and poly(ethylene glycol) (PEG) by the chain extending Diels–Alder reaction at the hydrophilic PEG terminals. Polymer, 2015, 67, 157-166.	1.8	30
84	Alumina fibers from poly[((3-ethoxypropanoyl)oxy)aloxane]. Journal of Applied Polymer Science, 1990, 40, 753-767.	1.3	29
85	Structural Characterization and Degradability of Poly(L-lactic acid)s Incorporating Phenyl-Substituted -Hydroxy Acids as Comonomers. Macromolecular Bioscience, 2003, 3, 301-309.	2.1	29
86	Vascular induction and cell infiltration into peptide-modified bioactive silk fibroin hydrogels. Journal of Materials Chemistry B, 2017, 5, 7557-7571.	2.9	29
87	Polymerization via Betaine. V. Alternating Copolymerization of 1,3,3-Trimethylazetidine with Acrylic Acid. A Novel Method for the Preparation of Amine-Ester Type Polymer. Macromolecules, 1974, 7, 956-958.	2.2	28
88	Polymerization via Zwitterion. 15. Alternating Copolymerizations of Cyclic Imino Ethers with Hydroxyalkyl Acrylates Involving Hydrogen Transfer of the Acrylates. Macromolecules, 1977, 10, 239-242.	2.2	28
89	Preparation of poly(malicacid) and its ester derivatives by direct polycondensation of malic acid and .BETAethyl malate Kobunshi Ronbunshu, 1987, 44, 701-709.	0.2	28
90	Copolymerization of γ-valerolactone and β-butyrolactone. European Polymer Journal, 1998, 34, 117-122.	2.6	28

#	Article	IF	CITATIONS
91	Synthesis and properties of multiblock copolymers consisting of poly(L-lactic acid) and poly(oxypropylene-co-oxyethylene) prepared by direct polycondensation. Journal of Polymer Science Part A, 1999, 37, 1513-1521.	2.5	28
92	Polymerization via Zwitterion. VII. Alternating Ring-Opening Copolymerization of 2-Methyl-2-oxazoline with 3-Hydroxy-1-propanesulfonic Acid Sultone. Macromolecules, 1975, 8, 259-261.	2.2	27
93	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 939-950.	1.1	27
94	Boron nitride preceramics based on B,B,B-triaminoborazine. Journal of Inorganic and Organometallic Polymers, 1992, 2, 231-242.	1.5	27
95	Lap Shear Bond Strength of Thermoplastic Polyimides and Copolyimides. High Performance Polymers, 1997, 9, 17-31.	0.8	27
96	Hydrogen-Transfer Polymerization of Hydroxyalkyl Acrylates. Macromolecules, 1975, 8, 950-952.	2.2	26
97	Effect of Thermoresponsive Poly(L-lactic acid)–poly(ethylene glycol) Gel Injection on Left Ventricular Remodeling in a Rat Myocardial Infarction Model. Tissue Engineering and Regenerative Medicine, 2017, 14, 507-516.	1.6	26
98	Synthesis and properties of novel thermosetting polysiloxane-block-polyimides with vinyl functionality. Polymer, 1998, 39, 2941-2949.	1.8	25
99	Characterization of polysiloxane-block-polyimides with silicate group in the polysiloxane segments. Polymer, 1999, 40, 1853-1862.	1.8	25
100	An Amyloseâ€Poly(<scp>l</scp> â€lactide) Inclusion Supramolecular Polymer: Enzymatic Synthesis by Means of Vineâ€īwining Polymerization Using a Primer–Guest Conjugate. Macromolecular Chemistry and Physics, 2013, 214, 2829-2834.	1.1	25
101	Preparation of Nano-Particles of Poly(phenylsilsesquioxane)s by Emulsion Polycondensation of Phenylsilanetriol Formed in Aqueous Solution. Polymer Journal, 2002, 34, 709-713.	1.3	24
102	Synthesis of poly[(acyloxy)aloxane] with carboxyl ligand and its utilization for the processing of alumina fiber. Macromolecules, 1987, 20, 2329-2334.	2.2	23
103	"Spontaneous" vinyl polymerization of 2-vinyl-2-oxazolines. Macromolecules, 1985, 18, 1641-1648.	2.2	22
104	Toughened PLA- <i>b</i> -PCL- <i>b</i> -PLA triblock copolymer based biomaterials: effect of self-assembled nanostructure and stereocomplexation on the mechanical properties. Polymer Chemistry, 2021, 12, 3806-3824.	1.9	22
105	Polymerization via Betaine. IV. Alternating Copolymerization of 2-Benzyliminotetrahydrofuran with β-Propiolactone and with Acrylic Acid. Macromolecules, 1974, 7, 546-549.	2.2	21
106	Polymerization via Zwitterion. 16. Alternating Copolymerization of Cyclic Phosphite with α-Keto Acid. Macromolecules, 1977, 10, 791-794.	2.2	21
107	Title is missing!. Die Makromolekulare Chemie, 1985, 186, 549-557.	1.1	21
108	Surface Modification of Poly(L-lactic acid) Film with Bioactive Materials by a Novel Direct Alkaline Treatment Process Kobunshi Ronbunshu, 1998, 55, 328-333.	0.2	21

#	Article	IF	CITATIONS
109	Synthesis of polyglactin by melt/solid polycondensation of glycolic/L-lactic acids. Polymer International, 2004, 53, 254-258.	1.6	21
110	Evaluating Relative Chain Orientation of Amylose and Poly(<scp>l</scp> â€lactide) in Inclusion Complexes Formed by Vineâ€īwining Polymerization Using Primer–Guest Conjugates. Macromolecular Chemistry and Physics, 2015, 216, 794-800.	1.1	21
111	Title is missing!. Angewandte Makromolekulare Chemie, 1995, 224, 153-166.	0.3	20
112	Enhanced Stereocomplexation by Enantiomer Adjustment for Stereo Diblock Polylactides with Nonâ€Equivalent <scp>D</scp> / <scp>L</scp> Ratios. Macromolecular Chemistry and Physics, 2010, 211, 1426-1432.	1,1	20
113	Polymerization via Zwitterion. 11. Alternating Cooligomerizations of 2-Phenyl-1,3,2-dioxaphospholane with Vinyl Monomers having Electron-Withdrawing Groups. Macromolecules, 1977, 10, 64-68.	2.2	19
114	Reversible reaction between cyclic phosphonite and aromatic cyclic disulfide to form a spiro dithiophosphorane. Observation of reductive elimination of a phosphorus(V) compound. Journal of Organic Chemistry, 1983, 48, 3815-3816.	1.7	19
115	Copolymerization of γ-butyrolactone and β-butyrolactone. Macromolecular Chemistry and Physics, 1997, 198, 1109-1120.	1.1	19
116	Synthesis and gel formation of hyperbranched supramolecular polymer by vine-twining polymerization using branched primer–guest conjugate. Polymer, 2015, 73, 9-16.	1.8	19
117	Bacterial Reduction of Azo Compounds as a Model Reaction for the Degradation of Azo-Containing Polyurethane by the Action of Intestinal Flora. Bulletin of the Chemical Society of Japan, 1996, 69, 1139-1142.	2.0	18
118	Self-Assembly of Stereocomplex-Type Poly(lactic acid). Polymer Journal, 2006, 38, 1061-1067.	1.3	17
119	Nano-Ordered Surface Morphologies by Stereocomplexation of the Enantiomeric Polylactide Chains: Specific Interactions of Surface-Immobilized Poly(<scp>d</scp> -lactide) and Poly(ethylene) Tj ETQq1 1 0.7843	14 rgBJ /Ov	verløck 10 Tfis
120	Macromolecular design of specialty polylactides by means of controlled copolymerization and stereocomplexation. Polymer International, 2017, 66, 260-276.	1.6	17
121	Effect of Block Length and Stereocomplexation on the Thermally Processable Poly(Îμ-caprolactone) and Poly(Lactic acid) Block Copolymers for Biomedical Applications. ACS Applied Polymer Materials, 2019, 1, 3354-3365.	2.0	17
122	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1986, 7, 249-253.	1.1	16
123	End-Group Analysis of Bacterially Produced Poly(3-hydroxybutyrate): Discovery of Succinate as the Polymerization Starter. Macromolecules, 2009, 42, 4038-4046.	2.2	16
124	Ring-opening polymerization of a macrocyclic lactone monomer isolated from oligomeric byproducts of poly(butylene succinate) (PBS): An efficient route to high-molecular-weight PBS and block copolymers of PBS. Polymer, 2014, 55, 5673-5679.	1.8	16
125	Metal-catalyzed Stereoselective and Protecting-group-free Synthesis of 1,2- <i>cis</i> -Glycosides Using 4,6-Dimethoxy-1,3,5-triazin-2-yl Glycosides as Glycosyl Donors. Chemistry Letters, 2015, 44, 846-848.	0.7	16
126	Synthesis and properties of stereo mixtures of enantiomeric block copolymers of polylactide and aliphatic polycarbonate. Polymer International, 2015, 64, 641-646.	1.6	16

#	Article	IF	CITATIONS
127	A new route to pentacovalent cyclic acyloxyphosphoranes. Journal of the American Chemical Society, 1976, 98, 7843-7844.	6.6	15
128	Structure analysis of a soluble polysiloxane-block-polyimide and kinetic analysis of the solution imidization of the relevant polyamic acid. Journal of Polymer Science Part A, 1998, 36, 2237-2245.	2.5	15
129	Preparing a Core-Sheath Bicomponent Fiber of Poly(butylene Terephthalate)/Poly(butylene) Tj ETQq1 1 0.7843	L4 rgBT /O	verlock 10 TF3
130	Structure and Properties of Bicomponent Core-Sheath Fibers from Poly(ethylene Terephthalate) and Biodegradable Aliphatic Polyesters. Textile Reseach Journal, 2001, 71, 145-152.	1.1	15
131	Highly Efficient Reinforcement of Poly- <scp>l</scp> -lactide Materials by Polymer Blending of a Thermotropic Liquid Crystalline Polymer. Biomacromolecules, 2011, 12, 354-358.	2.6	15
132	Properties of stereo multi-block polylactides obtained by chain-extension of stereo tri-block polylactides consisting of poly(L-lactide) and poly(D-lactide). Journal of Polymer Research, 2018, 25, 1.	1.2	15
133	Studies on the Ring-Opening Polymerization of Cyclic Ethers. Kinetics of Initiation Reaction by Triethyloxonium Tetrafluoroborate. Macromolecules, 1973, 6, 657-660.	2.2	14
134	Synthesis of Silyl-Terminated Polylactides for Controlled Surface Immobilization of Polylactide Macromolecular Chains. Biomacromolecules, 2011, 12, 4036-4043.	2.6	14
135	Reactive Electrospinning of Stereoblock Polylactides Prepared via Spontaneous Diels-Alder Coupling of Bis Maleimide-terminated Poly-L-lactide and Bis Furan-terminated Poly-D-lactide. Journal of Fiber Science and Technology, 2012, 68, 64-72.	0.0	14
136	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1985, 6, 247-253.	1.1	13
137	Preparation of Chainâ€Extended Poly(hexamethylene carbonate)s and their Block Copolymerization with Polyâ€ <scp>L</scp> ″actide to Synthesize Partly Biobased Thermoplastic Elastomers. Macromolecular Materials and Engineering, 2014, 299, 1384-1394.	1.7	13
138	Molecular weight increase driven by evolution of crystal structure in the process of solid-state polycondensation of poly(l-lactic acid). Polymer, 2017, 126, 133-140.	1.8	13
139	Influence of decomposition temperature of aromatic sulfonic acid catalysts on the molecular weight and thermal stability of poly(l-lactic acid) prepared by melt/solid state polycondenstaion. Polymer, 2018, 155, 218-224.	1.8	13
140	Effect of ethylene glycol on the end group structure of poly(3-hydroxybutyrate). Polymer Degradation and Stability, 2010, 95, 1284-1291.	2.7	12
141	Gelation Behavior of Bioabsorbable Hydrogels Consisting of Enantiomeric Mixtures of A–B–A Triâ€block Copolymers of Polylactides (A) and Poly(ethylene glycol) (B). Macromolecular Chemistry and Physics, 2012, 213, 2174-2180.	1.1	12
142	Novel polycondensations via poly(oxyethylene) diglycolic acid diamine salts. Macromolecules, 1983, 16, 1023-1024.	2.2	11
143	Poly(oxyethylene) diglycolic acid: A novel blending antistatic agent for polyamide fibres. Angewandte Makromolekulare Chemie, 1985, 132, 169-185.	0.3	11
144	Title is missing!. Angewandte Makromolekulare Chemie, 1997, 246, 109-123.	0.3	11

#	Article	IF	CITATIONS
145	Cell adhesion and surface chemistry of biodegradable aliphatic polyesters: Discovery of particularly low cell adhesion behavior on poly(3-[RS]-hydroxybutyrate). Macromolecular Research, 2013, 21, 1305-1313.	1.0	11
146	Antistatic modification of polyester fiber with poly(ester-eyher) as blonding agent Journal of Fiber Science and Technology, 1988, 44, 613-619.	0.0	11
147	N-acetylpolyethylenimine. Polymer Bulletin, 1981, 6, 163-168.	1.7	10
148	Title is missing!. Angewandte Makromolekulare Chemie, 1996, 242, 171-181.	0.3	10
149	Novel Isomerization Polymerization of Glycidyl Acetate To Produce a Poly(ortho ester). Macromolecules, 1997, 30, 6067-6073.	2.2	10
150	Formation of Stable Nanoparticles of Poly(phenyl/methylsilsesquioxane) in Aqueous Solution. Polymer Journal, 2003, 35, 270-275.	1.3	10
151	Facile Synthesis of Oligosaccharide–Poly(<scp>l</scp> -lactide) Conjugates Forming Nanoparticles with Saccharide Core and Shell. Chemistry Letters, 2013, 42, 197-199.	0.7	10
152	Synthesis and enzymatic degradability of an aliphatic/aromatic block copolyester: poly(butylene) Tj ETQq0 0 0 rg	BT_/Overlo 1.0	ock 10 Tf 50 4
153	Colloidal silica bearing thin polyacrylate coat: A facile inorganic modifier of acrylic emulsions for fabricating hybrid films with least aggregation of silica nanoparticles. Progress in Organic Coatings, 2019, 128, 11-20.	1.9	10
154	Selective reduction of .alphaketo acids to .alphahydroxy acids by phosphites. Journal of Organic Chemistry, 1977, 42, 2797-2798.	1.7	9
155	Polymerization via zwitterion. 23. Terpolymerization among 2-phenyl-1,3,2-dioxaphospholane, methyl acrylate, and carbon disulfide. Polymer Bulletin, 1979, 1, 243-251.	1.7	9

155	acrýlate, and carbon disulfide. Polymer Búlletin, 1979, 1, 243-251.	1.7	9
156	Spinnability and antistatic properties of poly(ethylene terephthalate) fibers blended with poly(ethylene oxide) and sodium dodecylbenzenesulfonate Journal of Fiber Science and Technology, 1987, 43, 105-109.	0.0	9
157	Radical polymerization of oligoethylene glycol methyl vinyl ethers in protic polar solvents. Macromolecular Chemistry and Physics, 1998, 199, 119-125.	1.1	9
158	Tailoring of block copolymers based on the stoichiometric control of the end-functionality of telechelic oligomers and the utilization of large-scale fractionation by phase fluctuation chromatography: A synthetic strategy for the preparation of end-functionalized poly(L-lactide)-block-poly(oxyethylene). Journal of Polymer Science Part A, 2000, 38, 2405-2414.	2.5	9
159	Poly([R]-3-hydroxybutyrate-co-glycolate): A Novel PHB Derivative Chemically Synthesized by Copolymerization of a New Cyclic Diester Monomer [R]-4-Methyl-1,5-dioxepane-2,6-dione. Macromolecules, 2002, 35, 2423-2425.	2.2	9
160	Composition analysis of poly(ethylene glycol)–poly(l-lactide) diblock copolymer studied by two-dimensional column chromatography. Journal of Chromatography A, 2002, 966, 41-51.	1.8	9
161	Effect of Polymer Molecular Weight on the Electrospinning of Polylactides in Entangled and Aligned Fiber Forms. Journal of Fiber Science and Technology, 2010, 66, 35-42.	0.0	9
162	A Novel Bioabsorbable Gel Formed from a Mixed Micelle Solution of Poly(oxyethylene)â€ <i>block</i> â€poly(<scp>L</scp> ″actide) and Boly(oxyethylene)â€ <i>blockáfe/i> poly(<scp>L</scp>″actide) by Concomitant Storeocompleyation and</i>	1.1	9

⁶² Poly(oxyethylene)â€<i>blockâ€</i>poly(<scp>D</scp>â€lactide) by Concomitant Stereocomplexation and Chain Extension. Macromolecular Chemistry and Physics, 2013, 214, 1559-1568.

#	Article	IF	CITATIONS
163	Improved thermal and mechanical properties of poly(butylene succinate) by polymer blending with a thermotropic liquid crystalline polyester. Journal of Applied Polymer Science, 2014, 131, .	1.3	9
164	Synthesis of Novel Hyper-Branched Polymers From Trimethoxysilyl-Terminated Polylactides and Their Utilization for Modification of Poly(<scp>l</scp> -Lactide) Materials. Macromolecular Materials and Engineering, 2015, 300, 650-660.	1.7	9
165	Nano-structured micelle particles of polylactide-poly(oxyethylene) block copolymers with different block sequences: Specific influence of stereocomplex formation of the polylactide blocks. Polymer, 2015, 66, 160-166.	1.8	9
166	New synthesis of spiro phosphorane by using diphenyl disulfide. A facile route to cyclic acyloxyphosphoranes from .alphahydroxy acids. Journal of Organic Chemistry, 1982, 47, 916-919.	1.7	8
167	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 295-303.	1.1	8
168	Preparation of Novel Thermally Stable Polyurea by the Cationic Ring-Opening Isomerization Polymerization of Polycyclic Pseudourea. Macromolecules, 1998, 31, 6822-6827.	2.2	8
169	Effect of Cation Content of Polycation-type Gene Carriers on in vitro Gene Transfer. Chemistry Letters, 1998, 27, 1171-1172.	0.7	8
170	Separation of a diblock–triblock copolymer mixture by phase fluctuation chromatography. Polymer, 2001, 42, 1067-1074.	1.8	8
171	Preparation and properties of ProNectin F-coated biodegradable hollow fibers. Journal of Artificial Organs, 2005, 8, 245-251.	0.4	8
172	Molecular Organization of Polylactides Immobilized on a Flat Surface: Observation of Single Crystal Arrays of Homochiral and Stereocomplexed Polylactides. Macromolecules, 2012, 45, 5993-6001.	2.2	8
173	Size-Controlled Nanomicelles of Poly(lactic acid)–Poly(ethylene glycol) Copolymers with a Multiblock Configuration. Polymers, 2015, 7, 1177-1191.	2.0	8
174	Tuning of Sol–Gel Transition in the Mixed Polymer Micelle Solutions of Copolymer Mixtures Consisting of Enantiomeric Diblock and Triblock Copolymers of Polylactide and Poly(ethylene glycol). Macromolecular Chemistry and Physics, 2015, 216, 837-846.	1.1	8
175	Ringâ€Opening Polymerization of a New Diester Cyclic Dimer of Mandelic and Glycolic Acid: An Efficient Synthesis Method for Derivatives of Amorphous Polyglycolide with High <i>T</i> _g . Macromolecular Rapid Communications, 2018, 39, e1700865.	2.0	8
176	Polymerization via zwitterion. 20. Alternating copolymerizations of 2-phenyl-1,3,2-dioxaphospholane with p-and o-formylbenzoic acids. Polymer Bulletin, 1978, 1, 91.	1.7	7
177	Zwitterions of 1-poly(oxyethylene)-2-imidazoline derivatives as anti-electrostatic agent for polyamide fiber. Polymer Bulletin, 1982, 6-6, 343.	1.7	7
178	Purification of serine hydroxymethyltransferase from Bacillus stearothermophilus with ion-exchange high-performance liquid chromatography. Journal of Chromatography A, 1992, 596, 203-209.	1.8	7
179	Properties and Degradability of Melt-spun Fibers of Poly(butylene succinate) and its Copolymer with L-Lactic Acid Journal of Fiber Science and Technology, 1999, 55, 120-126.	0.0	7
180	Phase Fluctuation Chromatography of Diblock Copolymer of Poly(ethylene glycol) and Poly(l-lactide) for Fractionation by the Block Length Ratio. Macromolecules, 2001, 34, 4949-4957.	2.2	7

#	Article	IF	CITATIONS
181	In vitro biodegradability and surface properties of block copoly(ester-ether)s consisting of poly(L-lactide)and polyether. Macromolecular Research, 2003, 11, 42-46.	1.0	7
182	Synthesis and characterization of polytulipalinâ€ <i>g</i> â€polylactide copolymers. Journal of Polymer Science Part A, 2012, 50, 1111-1119.	2.5	7
183	Highâ€molecularâ€weight poly(1,2â€propylene succinate): A soft biobased polyester applicable as an effective modifier of poly(<scp>l</scp> ‣actide). Journal of Polymer Science Part A, 2018, 56, 1795-1805.	2.5	7
184	STUDIES ON ANTISTATIC POLY(ETHYLENE TEREPHTHALATE) FIBERS BLENDED WITH POLY (ETHYLENE OXIDE). Journal of Fiber Science and Technology, 1984, 40, T104-T112.	0.0	7
185	Synthesis and mechanochemical properties of biobased <scp>ABCBA</scp> â€type pentablock copolymers comprising polyâ€ <scp>d</scp> â€tactide (A), polyâ€ <scp>l</scp> â€tactide (B) and poly(1,2â€propylene succinat (C). Journal of Polymer Science, 2022, 60, 2043-2054.	e). 0	7
186	Preparation of poly(.ALPHAD,L-malic acid-co-glycolic acid) by ring-opening polymerization of a novel cyclic diester Kobunshi Ronbunshu, 1989, 46, 281-284.	0.2	6
187	The Effects of Synthesis Conditions of Poly(phenylsilsesquioxane) on Its Chemical Structure Kobunshi Ronbunshu, 1996, 53, 193-200.	0.2	6
188	Highly stabilized nanostructures from poly(L-lactide)-block-poly(oxyethylene) having a photoreactive end functionality. Journal of Polymer Science Part A, 2001, 39, 4249-4254.	2.5	6
189	Layer-by-Layer Crystallization of Enantiomeric Poly(lactide)s. Journal of Nanoscience and Nanotechnology, 2006, 6, 3863-3866.	0.9	6
190	Morphological Analysis of Shrinkproof Wool Fibers by SEM Combined with Alkaline and Enzymatic Etching Techniques: Microstructural Differences of DCCA- and Kroy-Processed Fibers. Journal of Fiber Science and Technology, 2010, 66, 131-139.	0.0	6
191	Unique structure and properties of inorganic–organic hybrid films prepared from acryl/silica nano-composite emulsions. Progress in Organic Coatings, 2016, 93, 109-117.	1.9	6
192	Present Situation and Future Perspectives of Poly(lactic acid). Advances in Polymer Science, 2017, , 1-25.	0.4	6
193	Effect of the block length and the molecular weight on the isothermal crystallization behavior of multi-stereoblock poly(lactic-acid)s. Polymer Degradation and Stability, 2017, 142, 178-187.	2.7	6
194	Enhancement of <i>T</i> _g of Poly(<scp>l</scp> â€lactide) by Incorporation of Biobased Mandelicâ€Acidâ€Đerived Phenyl Groups by Polymerization and Polymer Blending. Macromolecular Chemistry and Physics, 2020, 221, 1900392.	1.1	6
195	New synthesis of pentacovalent phosphorus compounds of cyclic acyloxy- and amido-phosphoranes. Journal of the Chemical Society Chemical Communications, 1976, , 443a.	2.0	5
196	Antistatic modification of polyester with carboxyterminated poly(oxyethylene). Angewandte Makromolekulare Chemie, 1994, 217, 129-137.	0.3	5
197	Title is missing!. Angewandte Makromolekulare Chemie, 1997, 251, 181-191.	0.3	5
198	Preparation of novel reactive plastisol based on poly(vinyl chloride) and multifunctional acryl esters. Journal of Applied Polymer Science, 2000, 77, 1794-1801.	1.3	5

#	Article	IF	CITATIONS
199	Chemical Modification and some Aligned Composites of Chitosan in a Filament State. Macromolecular Bioscience, 2003, 3, 620-628.	2.1	5
200	Controlled degradation of porous poly(lactide) stereocomplex films prepared by the selective extraction of co-assembled poly(vinyl alcohol). Polymer Bulletin, 2007, 58, 703-709.	1.7	5
201	Properties of a Core-Sheath Conjugate Fiber Composed of Poly (butylene terephthalate) and Poly (L-lactic acid) Journal of Fiber Science and Technology, 2000, 56, 241-248.	0.0	5
202	Synthesis and characterization of a novel rac-PHB derivative containing .ALPHAmalate units Journal of Fiber Science and Technology, 2001, 57, 191-197.	0.0	5
203	Thermal polymerization of spiroacyloxyphosphoranes and the related cooligomerization between cyclic phosphorus(III) compounds and .alphahydroxy acids. Macromolecules, 1981, 14, 115-117.	2.2	4
204	Cationic Ring-Opening Polymerization of (S)-2-Ethoxy-4-isopropyl-5(4H)-oxazolone To Yield Poly(N-ethoxycarbonyl-l-valine). Macromolecules, 1997, 30, 1863-1868.	2.2	4
205	Isomerization polymerization and copolymerization of glycidyl alkanoates catalyzed by methylaluminum bis(2,6-di-t-butyl-4-methylphenoxide). Journal of Polymer Science Part A, 1999, 37, 435-444.	2.5	4
206	Isomerization polymerization of alkyl glycidyl carbonates to produce novel poly(orthocarbonate)s. Journal of Polymer Science Part A, 1999, 37, 445-453.	2.5	4
207	Synthesis of Poly (phenylsilsesquioxane) by the Aid of Phase Transfer Catalysts Kobunshi Ronbunshu, 2001, 58, 319-325.	0.2	4
208	Properties and Enzymatic Degradability of Melt-Spun Fibers of Poly(butylene succinate) and Its Various Derivatives Journal of Fiber Science and Technology, 2002, 58, 209-215.	0.0	4
209	Synthesis and Properties of Poly (imide-siloxane) with Reactive Functionalities in Siloxane Segment. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 227-232.	0.1	4
210	SEM Images of Wool Fiber Cross Sections Etched by Means of Protease Digestion. Journal of Fiber Science and Technology, 2008, 64, 118-124.	0.0	4
211	Preparation and biodegradation of hydroxyl terminated poly(fumaric acid-co-diethylene glycol) and its segmented polyurethane. Journal of Applied Polymer Science, 2011, 120, 2477-2484.	1.3	4
212	Homopolymerization and copolymerization of a dilactone, 13,26â€dihexylâ€1,14â€dioxaâ€cyclohexacosaneâ€2,15â€dione: Synthesis of bioâ€based polyesters and copoly consisting of 12â€hydroxystearate sequences. Journal of Polymer Science Part A, 2012, 50, 1290-1297.	es 2e5 s	4
213	Competitive Effects of Stereocomplexation and Hyperâ€Conjugation of Triethoxysilylâ€Terminated Poly(<scp>d</scp> ″actide) in Poly(<scp>l</scp> ″actide) matrices. Macromolecular Materials and Engineering, 2015, 300, 1123-1132.	1.7	4
214	ABCBA Pentablock Copolymers Consisting of Poly(<scp>l</scp> â€lactide) (PLLA: A), Poly(<scp>d</scp> â€lactide) (PDLA: B), and Poly(butylene succinate) (PBS: C): Effects of Semicrystalline PBS Segments on the Stereoâ€Crystallinity and Properties. Macromolecular Materials and Engineering, 2016, 301, 1121-1131.	1.7	4
215	Thermal properties of the multi-stereo block poly(lactic acid)s with various block lengths. Polymer Degradation and Stability, 2017, 142, 188-197.	2.7	4
216	Controlling the thermomechanical properties of biobased ABA triblock copolymers comprising polylactide (A) and poly(1,2â€propylene succinate) (B) with high molecular weight. Journal of Polymer Science, 2020, 58, 860-871.	2.0	4

#	Article	IF	CITATIONS
217	Melt spinning and hydrolysis of poly(glycolic acid) Kobunshi Ronbunshu, 1984, 41, 717-725.	0.2	3
218	Alumina–carbon composite fibers from poly[(acyloxy)aloxane]s. Journal of Applied Polymer Science, 1992, 44, 1009-1016.	1.3	3
219	Molecular mechanical analysis of polymer conformation, 2. Relation between chain conformation and birefringence of stretched non-crystalline polyurethanes with various substituent groups. Macromolecular Chemistry and Physics, 1994, 195, 1985-2001.	1.1	3
220	Synthesis and Properties of Poly(L-lactide) Including Polyether Segments Kobunshi Ronbunshu, 1995, 52, 692-697.	0.2	3
221	Living ring-opening isomerization polymerization of 2,3,5,6-tetrahydroimidazo[2,1-b][1,3]oxazole with sulfonate initiators. Macromolecular Chemistry and Physics, 1998, 199, 2237-2246.	1.1	3
222	Protecting-group-free synthesis of glycopolymers bearing thioglycosides via one-pot monomer synthesis from free saccharides. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.5	3
223	Preparation of Chain-Extended Poly(hexamethylene/pentamethylene carbonate)s and Their Block Copolymerization with Poly-L-lactide into Partly Biobased Thermoplastic Elastomers. Journal of Fiber Science and Technology, 2015, 71, 91-104.	0.0	3
224	POLY (ETHER-ETHER-KETONE): MELT SPINNING AND FIBER PROPERTIES. Journal of Fiber Science and Technology, 1985, 41, T1-T7.	0.0	3
225	An Universal Stoichiometric Relationship between Weight Loss and Glucose Formation in the Enzymatic Treatment of Cellulosic Fibers with Cellulase from Flamentous Fungi Journal of Fiber Science and Technology, 2001, 57, 279-284.	0.0	3
226	Studies on Antistatic Polyester Fibers Comprising Poly(ethylene oxide), Sodium Dodecylbenzene Sulfonate, and Sodium Chloride Journal of Fiber Science and Technology, 1993, 49, 190-196.	0.0	2
227	Synthesis and Preceramic Applications of Poly(aminoborazinyls). ACS Symposium Series, 1994, , 375-388.	0.5	2
228	Cationic Ring-Opening Polymerization of 4,5-Dihydro-1,3-oxazol-5-ones to Produce N-Alkoxycarbonylated Polypeptides and Its Related Oligomerization. Polymer Journal, 1997, 29, 854-859.	1.3	2
229	Living cationic ring-opening polymerization of 3,4-dihydro-2H-benzo[4,5]imidazo[2,1-b]oxazine. Macromolecular Chemistry and Physics, 1999, 200, 594-600.	1.1	2
230	Epoxy resin particles, 2. An efficient synthetic method of epoxy resin particles in organic solvent by the aid of modified polyolefins as dispersant. Macromolecular Materials and Engineering, 2000, 283, 62-67.	1.7	2
231	Epoxy Resin Particles, 3. Particle Formation of Epoxy Resin in Aqueous Emulsion State. Macromolecular Materials and Engineering, 2001, 286, 325-329.	1.7	2
232	New Development of Polylactides. Kobunshi, 2008, 57, 430-433.	0.0	2
233	Microstructural Analysis of Wool Fibers by SEM Images of Their Cross-Sections Etched by Alkali Treatment. Journal of Fiber Science and Technology, 2009, 65, 246-251.	0.0	2
234	Catalytic behavior of silyl-amide complexes for lactide polymerization. Macromolecular Research, 2013, 21, 385-391.	1.0	2

#	Article	IF	CITATIONS
235	Electrospinning and Characterization of Aligned Nanofibers from Chitosan/Polyvinyl Alcohol Mixtures: Comparison of Several Target Devices Newly Designed. Journal of Fiber Science and Technology, 2011, 67, 103-108.	0.0	2
236	Relation between Molecular Conformation and Birefringence of Common Olefinic and Vinyl Polymers Journal of Fiber Science and Technology, 1993, 49, 339-351.	0.0	2
237	Vacuum deposition of Silicon oxide on the nylon 6 films utilizing silicon monooxide as an evaporation material Journal of Fiber Science and Technology, 1998, 54, 577-582.	0.0	2
238	Biobased Polymers. , 2015, , 1-7.		2
239	Valorization of a CO ₂ â€Derived Lactone by Acyclic Diene Metathesis Polymerization. ChemistrySelect, 2021, 6, 13947-13954.	0.7	2
240	Effects of chain microstructure on the thermal, mechanical and crystallization behaviors of poly(ε-caprolactone-co-lactide) copolymers: Processable biomaterials with tunable properties. Materials Today Communications, 2022, 33, 104040.	0.9	2
241	Polycondensation of carboxyl-terminated and chlorocarbonyl-terminated poly(oxyethylene)s with diamines Kobunshi Ronbunshu, 1984, 41, 657-664.	0.2	1
242	Studies on Blend of Liquid Crystalline and Flexible Polymers. II. Blend of Liquid Crystalline and Flexible Polyesters Kobunshi Ronbunshu, 1991, 48, 609-617.	0.2	1
243	Flexural Properties of Unidirectional Composites Laminarily Reinforced with Mesophase Pitch Based Carbon Fibers and Alumina Fibers Journal of Fiber Science and Technology, 1996, 52, 12-17.	0.0	1
244	Isolation and cationic ring-opening polymerization of 2,3,5,6-tetrahydroimidazo[2,1-b][1,3]oxazole to produce a thermally stable polyurea. Macromolecular Rapid Communications, 1997, 18, 897-902.	2.0	1
245	Nucleophilic Polymerization of Methyl Methacrylate Activated by a Brønsted Acid. ACS Symposium Series, 2000, , 77-91.	0.5	1
246	Thermo-Sensitive Gels: Biodegradable Hydrogels from Enantiomeric Copolymers of Poly(lactide) and Poly(ethylene glycol). ACS Symposium Series, 2006, , 216-233.	0.5	1
247	Formation of Crystallosolvates from Mixtures of Poly(L-lactide) and Diphenyl Ether. Macromolecular Chemistry and Physics, 2009, 210, 440-446.	1.1	1
248	Enzymatic formation of 13,26-Dihexyl-1,14-dioxacyclohexacosane-2,15-dione via Oligomerization of 12-Hydroxystearic acid. Macromolecular Research, 2009, 17, 919-925.	1.0	1
249	Difference in Cell Adhesion on Three Biodegradable Aliphatic Polyesters. Current Applied Polymer Science, 2018, 2, 94-101.	0.2	1
250	Radical polymerization of oligoethylene glycol methyl vinyl ethers in protic polar solvents. , 1998, 199, 119.		1
251	Tailoring of block copolymers based on the stoichiometric control of the end-functionality of telechelic oligomers and the utilization of large-scale fractionation by phase fluctuation chromatography: A synthetic strategy for the preparation of end-functionalized poly(L-lactide)-block-poly(oxvethylene). 2000, 38, 2405.		1
252	Thermo-Responsive Biodegradable Hydrogels from Stereocomplexed Poly(lactide)s. , 2010, , 157-177.		1

252 Thermo-Responsive Biodegradable Hydrogels from Stereocomplexed Poly(lactide)s., 2010, , 157-177.

#	Article	IF	CITATIONS
253	Vacuum deposition of silicon oxide on the nylon 6 films utilizing the mixture of silicon and silicon dioxide as an evaporation material. Journal of Fiber Science and Technology, 2000, 56, 26-32.	0.0	1
254	The Changes in the Surface Morphologies and the Barrier Properties Accompanied by the Strains Imposed on the Silicate Deposited Nylon 6 Films Journal of Fiber Science and Technology, 2002, 58, 34-39.	0.0	1
255	Biodegration of Aromaticâ;,Aliphatic Polyesters. Journal of Fiber Science and Technology, 2003, 59, P.319-P.323.	0.0	1
256	The New World of Biobased Polymers and Fibers. Journal of Fiber Science and Technology, 2006, 62, P.322-P.322.	0.0	1
257	Local Chain Motions and Relaxations of Polycarbonates with Differenct Side Groups Journal of Fiber Science and Technology, 1995, 51, 62-71.	0.0	1
258	Spontaneous Alternating Copolymerization of Cyclic Phosphorus Compounds via Phosphonium Zwitterion Intermediates. ACS Symposium Series, 1977, , 332-343.	0.5	0
259	Title is missing!. Kobunshi Ronbunshu, 1983, 40, 595-601.	0.2	0
260	Interaction of ?-Deoxyadenosine in Template DNA with DNA Polymerase: A Novel Mutational Spectrum Induced by ?-Deoxyadenosine. Annals of the New York Academy of Sciences, 1994, 726, 359-360.	1.8	0
261	Synthesis of Polyurethane Containing Siloxane Ladder Sequences in Its Backbone Kobunshi Ronbunshu, 1995, 52, 25-32.	0.2	0
262	Modification of Vinyl Polymer by Means of a Technique Chemically Bonding Aspartic Acid .BETAAllyl Ester Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1995, 1995, 300-305.	0.1	0
263	Molecular mechanics analysis of polymer conformation, 4. Local chain motions and molecular relaxations of poly(parabanic acids). Macromolecular Theory and Simulations, 1995, 4, 1039-1054.	0.6	0
264	Flexural Properties of Unidirectional Hybrid Composites of Three Layers, Carbon Fibers/Epoxy, AluminaFibers/Epoxy and Low Elastic Layers. Journal of Fiber Science and Technology, 2003, 59, 348-352.	0.0	0
265	Synthesis of Chitosan Microemulsion. Journal of Fiber Science and Technology, 2006, 62, 162-166.	0.0	0
266	Formation of Crystallosolvates Comprising Nanoâ€Crystals of Stereocomplex in a Ternary Mixture of Poly(<scp>L</scp> ″actide)/Poly(<scp>D</scp> ″actide)/Diphenyl Ether. Macromolecular Chemistry and Physics, 2009, 210, 1915-1922.	1.1	0
267	Macromol. Chem. Phys. 13/2010. Macromolecular Chemistry and Physics, 2010, 211, n/a-n/a.	1.1	0
268	Stoichiometric Analysis of the Weight-Decrease in the Enzymatic Treatment of Cotton Fiber: A Guide to Real-Time Monitoring System for the Treatment Journal of Fiber Science and Technology, 2000, 56, 456-461.	0.0	0
269	Changes in the Barrier Properties to Gaseous H2S Accompanying Elongational and Bending Deformations Imposed on Silicate Deposited Nylon 6 Films. Zairyo/Journal of the Society of Materials Science, Japan, 2002, 51, 237-242.	0.1	0
270	Biobased Fibers and Polymers. Journal of Fiber Science and Technology, 2006, 62, P.348-P.355.	0.0	0

#	Article	IF	CITATIONS
271	Creating the Fiber Society of This Century in the Occasion of Corporate Official Change. Journal of Fiber Science and Technology, 2012, 68, P.1-P.1.	0.0	0
272	<i>Development of a High-Performance Specialty Paint, Nano-Composite Emulsion, by Inorganic-Organic Hybridization</i> . Journal of Fiber Science and Technology, 2014, 70, P-180-P-183.	0.0	0
273	<i>Organize New Research Projects for New Era (in the Occasion of the 70th Anniversary) </i> . Journal of Fiber Science and Technology, 2014, 70, P-275-P-275.	0.0	0
274	NO CATALYST COPOLYMERIZATION BY SPONTANEOUS INITIATION MECHANISM., 1977, , 307-315.		0
275	Design of electrode for corona discharge and expansion behavior of HDPE films emerged in electrostatic field Journal of Fiber Science and Technology, 1985, 41, T22-T27.	0.0	0
276	The deformation behavior of liquid polybutadiene in various electrostatic fields Journal of Fiber Science and Technology, 1985, 41, T63-T68.	0.0	0
277	Flexual Properties of Unidirectional Composites Laminarily Reinforced with Carbon and Alumina Fibers Journal of Fiber Science and Technology, 1993, 49, 397-403.	0.0	0
278	Effect of Enzymatic Treatment on the Morphology of Cotton Fibers Shattered by Dry Process Journal of Fiber Science and Technology, 1997, 53, 101-106.	0.0	0
279	Development of Advanced Inorganic and Organic Fiber Materials with Specific Functional Properties. Journal of Fiber Science and Technology, 1998, 54, P328-P332.	0.0	0
280	Decreased Acidic Dyeability of N-Terminus-Blocked Polyamide Fibers Prepared by Reactive Spinning Journal of Fiber Science and Technology, 1998, 54, 172-176.	0.0	0