Giovanni Cappelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9303084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Computers and Electronics in Agriculture, 2013, 96, 67-74.	3.7	130
2	Uncertainty in crop model predictions: What is the role of users?. Environmental Modelling and Software, 2016, 81, 165-173.	1.9	62
3	Comparison of leaf area index estimates by ceptometer and PocketLAI smart app in canopies with different structures. Field Crops Research, 2014, 155, 38-41.	2.3	55
4	Model simplification and development via reuse, sensitivity analysis and composition: A case study in crop modelling. Environmental Modelling and Software, 2014, 59, 44-58.	1.9	43
5	New multi-model approach gives good estimations of wheat yield under semi-arid climate in Morocco. Agronomy for Sustainable Development, 2015, 35, 157-167.	2.2	35
6	Coupling a generic disease model to the WARM rice simulator to assess leaf and panicle blast impacts in a temperate climate. European Journal of Agronomy, 2016, 76, 107-117.	1.9	29
7	Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change. Ecological Modelling, 2018, 368, 1-14.	1.2	27
8	Identifying trends and associated uncertainties in potential rice production under climate change in Mediterranean areas. Agricultural and Forest Meteorology, 2017, 237-238, 219-232.	1.9	26
9	Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes. Global Change Biology, 2017, 23, 4651-4662.	4.2	23
10	Evaluating the suitability of a generic fungal infection model for pest risk assessment studies. Ecological Modelling, 2012, 247, 58-63.	1.2	22
11	Identifying the most promising agronomic adaptation strategies for the tomato growing systems in Southern Italy via simulation modeling. European Journal of Agronomy, 2019, 111, 125937.	1.9	22
12	WOFOST-GTC: A new model for the simulation of winter rapeseed production and oil quality. Field Crops Research, 2016, 197, 125-132.	2.3	21
13	A software component implementing a library of models for the simulation of pre-harvest rice grain quality. Computers and Electronics in Agriculture, 2014, 104, 18-24.	3.7	17
14	Are advantages from the partial replacement of corn with second-generation energy crops undermined by climate change? A case study for giant reed in northern Italy. Biomass and Bioenergy, 2015, 80, 85-93.	2.9	17
15	Lower air pollution during COVID-19 lock-down: improving models and methods estimating ozone impacts on crops. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200188.	1.6	17
16	A multi-approach software library for estimating crop suitability to environment. Computers and Electronics in Agriculture, 2013, 90, 170-175.	3.7	16
17	District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios. Climatic Change, 2015, 132, 661-675.	1.7	14
18	Development and validation of a model to estimate postharvest losses during transport of tomatoes in West Africa. Computers and Electronics in Agriculture, 2013, 92, 32-47.	3.7	12

GIOVANNI CAPPELLI

#	Article	IF	CITATIONS
19	Development of a process-based simulation model of camelina seed and oil production: A case study in Northern Italy. Industrial Crops and Products, 2019, 134, 234-243.	2.5	9
20	GLORIFY: A new forecasting system for rice grain quality in Northern Italy. European Journal of Agronomy, 2018, 97, 70-80.	1.9	8
21	Wheat modeling in Morocco unexpectedly reveals predominance of photosynthesis versus leaf area expansion plant traits. Agronomy for Sustainable Development, 2013, 33, 393-403.	2.2	7
22	A web application to facilitate crop model comparison in ensemble studies. Environmental Modelling and Software, 2017, 97, 259-270.	1.9	7
23	SunnGro: A new crop model for the simulation of sunn hemp (Crotalaria juncea L.) grown under alternative management practices. Biomass and Bioenergy, 2021, 146, 105975.	2.9	6
24	Spatializing Crop Models for Sustainable Agriculture. , 2019, , 599-619.		6
25	Any chance to evaluate in vivo field methods using standard protocols?. Field Crops Research, 2014, 161, 128-136.	2.3	5
26	Boundaries and perspectives from a multi-model study on rice grain quality in Northern Italy. Field Crops Research, 2018, 215, 140-148.	2.3	5
27	Modelâ€based evaluation of climate change impacts on rice grain quality in the main European rice district. Food and Energy Security, 2021, 10, e307.	2.0	5
28	ISIde: A rice modelling platform for in silico ideotyping. Computers and Electronics in Agriculture, 2016, 128, 46-49.	3.7	4
29	Simulating oilseed fatty acid composition through a stochastic modelling approach. Industrial Crops and Products, 2020, 150, 112381.	2.5	4
30	Model-Based Assessment of Giant Reed (Arundo donax L.) Energy Yield in the Form of Diverse Biofuels in Marginal Areas of Italy. Land, 2021, 10, 548.	1.2	4
31	Can repeated soil amendment with biogas digestates increase soil suppressiveness toward non-specific soil-borne pathogens in agricultural lands?. Renewable Agriculture and Food Systems, 2021, 36, 353-364.	0.8	4
32	Impact of Agromanagement Practices on Rice Elongation: Analysis and Modelling. Crop Science, 2014, 54, 2294-2302.	0.8	1