Yonatan Ganor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9302991/publications.pdf

Version: 2024-02-01

17	894	840776	940533
papers	citations	h-index	g-index
17	17	17	1251
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nature Microbiology, 2019, 4, 633-644.	13.3	226
2	Human T Cells Express a Functional Ionotropic Glutamate Receptor GluR3, and Glutamate by Itself Triggers Integrin-Mediated Adhesion to Laminin and Fibronectin and Chemotactic Migration. Journal of Immunology, 2003, 170, 4362-4372.	0.8	168
3	The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. Journal of Neural Transmission, 2014, 121, 983-1006.	2.8	80
4	HIV-1 Efficient Entry in Inner Foreskin Is Mediated by Elevated CCL5/RANTES that Recruits T Cells and Fuels Conjugate Formation with Langerhans Cells. PLoS Pathogens, 2011, 7, e1002100.	4.7	76
5	HIVâ€1 Transmission in the Male Genital Tract. American Journal of Reproductive Immunology, 2011, 65, 284-291.	1.2	61
6	TCR Activation Eliminates Glutamate Receptor GluR3 from the Cell Surface of Normal Human T Cells, via an Autocrine/Paracrine Granzyme B-Mediated Proteolytic Cleavage. Journal of Immunology, 2007, 178, 683-692.	0.8	59
7	Autoantibodies to glutamate receptors can damage the brain in epilepsy, systemic lupus erythematosus and encephalitis. Expert Review of Neurotherapeutics, 2008, 8, 1141-1160.	2.8	55
8	Live Imaging of HIV-1 Transfer across T Cell Virological Synapse to Epithelial Cells that Promotes Stromal Macrophage Infection. Cell Reports, 2018, 23, 1794-1805.	6.4	35
9	Human T-leukemia and T-lymphoma express glutamate receptor AMPA GluR3, and the neurotransmitter glutamate elevates the cancer-related matrix-metalloproteinases inducer CD147/EMMPRIN, MMP-9 secretion and engraftment of T-leukemiain vivo. Leukemia and Lymphoma, 2009, 50, 985-997.	1.3	34
10	Glutamate in the Immune System: Glutamate Receptors in Immune Cells, Potent Effects, Endogenous Production and Involvement in Disease., 2012, , 121-161.		26
11	The Human Penis Is a Genuine Immunological Effector Site. Frontiers in Immunology, 2017, 8, 1732.	4.8	26
12	Calcitonin gene–related peptide inhibits Langerhans cell–mediated HIV-1 transmission. Journal of Experimental Medicine, 2013, 210, 2161-2170.	8.5	25
13	Calcitonin Gene-Related Peptide Induces HIV-1 Proteasomal Degradation in Mucosal Langerhans Cells. Journal of Virology, 2017, 91, .	3.4	11
14	Native CGRP Neuropeptide and Its Stable Analogue SAX, But Not CGRP Peptide Fragments, Inhibit Mucosal HIV-1 Transmission. Frontiers in Immunology, 2021, 12, 785072.	4.8	4
15	CGRP inhibits human Langerhans cells infection with HSV by differentially modulating specific HSV-1 and HSV-2 entry mechanisms. Mucosal Immunology, 2022, 15, 762-771.	6.0	4
16	Short Communication: Decreased Plasma Calcitonin Gene-Related Peptide as a Novel Biomarker for HIV-1 Disease Progression. AIDS Research and Human Retroviruses, 2019, 35, 52-55.	1.1	3
17	Experimental Models to Study HIV Latency Reversal from Male Genital Myeloid Cells. Methods in Molecular Biology, 2022, 2407, 189-204.	0.9	1