Jerome Faist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9302506/publications.pdf

Version: 2024-02-01

3731 5394 35,002 879 89 164 citations h-index g-index papers 889 889 889 12041 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantum Cascade Laser. Science, 1994, 264, 553-556.	12.6	4,380
2	Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9, 88-92.	31.4	1,016
3	Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature. Science, 2002, 295, 301-305.	12.6	722
4	Mid-infrared frequency comb based on a quantum cascade laser. Nature, 2012, 492, 229-233.	27.8	645
5	Ultrastrong Coupling of the Cyclotron Transition of a 2D Electron Gas to a THz Metamaterial. Science, 2012, 335, 1323-1326.	12.6	452
6	GaAs/AlxGa1â^'xAs quantum cascade lasers. Applied Physics Letters, 1998, 73, 3486-3488.	3.3	414
7	High power midâ€infrared (λâ^1⁄45 Î1⁄4m) quantum cascade lasers operating above room temperature. Applied Physics Letters, 1996, 68, 3680-3682.	3.3	401
8	Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nature Communications, 2014, 5, 5192.	12.8	390
9	Analysis of enhanced light emission from highly strained germanium microbridges. Nature Photonics, 2013, 7, 466-472.	31.4	367
10	Controlling the sign of quantum interference by tunnelling from quantum wells. Nature, 1997, 390, 589-591.	27.8	352
11	Distributed feedback quantum cascade lasers. Applied Physics Letters, 1997, 70, 2670-2672.	3.3	335
12	Short wavelength (λâ^1⁄43.4 ι⁄4m) quantum cascade laser based on strained compensated InGaAs/AlInAs. Ap Physics Letters, 1998, 72, 680-682.	pljed 9.3.3	300
13	Quantum cascade lasers operating from 1.2to1.6THz. Applied Physics Letters, 2007, 91, .	3.3	288
14	Observation of an electronic bound state above a potential well. Nature, 1992, 358, 565-567.	27.8	284
15	Intersubband Electroluminescence from Silicon-Based Quantum Cascade Structures. Science, 2000, 290, 2277-2280.	12.6	272
16	Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells. Physical Review B, 1994, 50, 8663-8674.	3.2	271
17	Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser. Optics Letters, 1998, 23, 219.	3.3	264
18	Resonant tunneling in quantum cascade lasers. IEEE Journal of Quantum Electronics, 1998, 34, 1722-1729.	1.9	244

#	Article	IF	CITATIONS
19	Octave-spanning semiconductor laser. Nature Photonics, 2015, 9, 42-47.	31.4	240
20	Gain without inversion in semiconductor nanostructures. Nature Materials, 2006, 5, 175-178.	27.5	237
21	Quantum-cascade lasers based on a bound-to-continuum transition. Applied Physics Letters, 2001, 78, 147-149.	3.3	234
22	THz and sub‶Hz quantum cascade lasers. Laser and Photonics Reviews, 2009, 3, 45-66.	8.7	234
23	Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Applied Phy. Letters, 2003, 82, 3165-3167.	sigs 3.3	219
24	Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation. IEEE Journal of Quantum Electronics, 2002, 38, 533-546.	1.9	215
25	Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Applied Physics B: Lasers and Optics, 2005, 81, 769-777.	2.2	214
26	External cavity quantum cascade laser tunable from 7.6 to 11.4â€,μm. Applied Physics Letters, 2009, 95, .	3.3	207
27	Low-divergence single-mode terahertz quantum cascade laser. Nature Photonics, 2009, 3, 586-590.	31.4	205
28	Low-threshold terahertz quantum-cascade lasers. Applied Physics Letters, 2002, 81, 1381-1383.	3.3	203
29	ac Stark Splitting and Quantum Interference with Intersubband Transitions in Quantum Wells. Physical Review Letters, 2005, 94, 157403.	7.8	202
30	Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Applied Physics B: Lasers and Optics, 2008, 92, 305-311.	2.2	202
31	Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation. Applied Physics Letters, 2008, 92, .	3.3	199
32	Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nature Communications, 2015, 6, 8969.	12.8	197
33	Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature, 2018, 556, 85-88.	27.8	197
34	Terahertz range quantum well infrared photodetector. Applied Physics Letters, 2004, 84, 475-477.	3.3	195
35	Vertical transition quantum cascade laser with Bragg confined excited state. Applied Physics Letters, 1995, 66, 538-540.	3.3	191
36	Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Applied Physics Letters, 2007, 91, .	3.3	190

#	Article	IF	CITATIONS
37	External cavity quantum cascade laser. Semiconductor Science and Technology, 2010, 25, 083001.	2.0	189
38	Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning. Physical Review A, 2008, 77, .	2.5	184
39	Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Applied Physics Letters, 2019, 115, .	3.3	178
40	Quantum Cascade Detectors. IEEE Journal of Quantum Electronics, 2009, 45, 1039-1052.	1.9	175
41	Quantum Cascade Laser Frequency Combs. Nanophotonics, 2016, 5, 272-291.	6.0	171
42	Continuous wave operation of a vertical transition quantum cascade laser above T=80 K. Applied Physics Letters, 1995, 67, 3057-3059.	3.3	165
43	Ultrastrong Coupling Regime and Plasmon Polaritons in Parabolic Semiconductor Quantum Wells. Physical Review Letters, 2012, 108, 106402.	7.8	165
44	Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial. Nano Letters, 2013, 13, 3193-3198.	9.1	163
45	High-Power Infrared (8-Micrometer Wavelength) Superlattice Lasers. Science, 1997, 276, 773-776.	12.6	161
46	Long-wavelength (?? 8–115??Âμm) semiconductor lasers with waveguides based on surface plasmons. Optics Letters, 1998, 23, 1366.	3.3	159
47	Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photonics, 2010, 4, 302-306.	31.4	156
48	High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 \hat{l} /4m. Applied Physics Letters, 2001, 78, 396-398.	3.3	154
49	Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage. New Journal of Physics, 2009, 11, 125022.	2.9	153
50	Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers. Applied Physics Letters, 2004, 84, 1659-1661.	3.3	150
51	Far-infrared (λ=88 μm) electroluminescence in a quantum cascade structure. Applied Physics Letters, 1998, 73, 3724-3726.	3.3	148
52	Imaging with a Terahertz quantum cascade laser. Optics Express, 2004, 12, 1879.	3.4	145
53	Ultrastrong coupling in the near field of complementary split-ring resonators. Physical Review B, 2014, 90, .	3.2	140
54	Quantum cascade laser with plasmonâ€enhanced waveguide operating at 8.4 Î⅓m wavelength. Applied Physics Letters, 1995, 66, 3242-3244.	3.3	139

#	Article	IF	CITATIONS
55	External cavity quantum-cascade laser tunable from 8.2 to $10.4\hat{l}\frac{1}{4}$ m using a gain element with a heterogeneous cascade. Applied Physics Letters, 2006, 88, 201113.	3.3	133
56	Biomedical terahertz imaging with a quantum cascade laser. Applied Physics Letters, 2006, 88, 153903.	3.3	133
57	Real-time imaging using a 28 THz quantum cascade laser and uncooled infrared microbolometer camera. Optics Letters, 2008, 33, 440.	3.3	128
58	Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at l̂»â‰^8.5 l̂¼m. Applied Physics Letters, 1998, 72, 1430-1432.	3.3	126
59	Microcavity Laser Oscillating in a Circuit-Based Resonator. Science, 2010, 327, 1495-1497.	12.6	126
60	Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Nature Communications, 2012, 3, 1096.	12.8	126
61	Low-loss Al-free waveguides for unipolar semiconductor lasers. Applied Physics Letters, 1999, 75, 3911-3913.	3.3	125
62	Linewidth and tuning characteristics of terahertz quantum cascade lasers. Optics Letters, 2004, 29, 575.	3.3	125
63	Quantum Cascade Lasers without Intersubband Population Inversion. Physical Review Letters, 1996, 76, 411-414.	7.8	123
64	Terahertz emission from lateral†photo-Dember currents. Optics Express, 2010, 18, 4939.	3.4	123
65	Single-Shot Sub-microsecond Mid-infrared Spectroscopy on Protein Reactions with Quantum Cascade Laser Frequency Combs. Analytical Chemistry, 2018, 90, 10494-10500.	6.5	123
66	Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy. Applied Physics B: Lasers and Optics, 2006, 82, 149-154.	2.2	122
67	Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits. Applied Physics Letters, 2007, 90, 253512.	3.3	120
68	Engineering quantum materials with chiral optical cavities. Nature Materials, 2021, 20, 438-442.	27.5	120
69	Terahertz photonic crystal quantum cascade lasers. Optics Express, 2007, 15, 16818.	3.4	119
70	Vertically emitting microdisk lasers. Nature Photonics, 2009, 3, 46-49.	31.4	119
71	Intersubband gain in a Bloch oscillator and quantum cascade laser. Physical Review B, 2003, 67, .	3.2	118
72	A density matrix model of transport and radiation in quantum cascade lasers. New Journal of Physics, 2010, 12, 033045.	2.9	118

#	Article	IF	CITATIONS
73	High-power continuous-wave quantum cascade lasers. IEEE Journal of Quantum Electronics, 1998, 34, 336-343.	1.9	117
74	Coherent instabilities in a semiconductor laser with fast gain recovery. Physical Review A, 2007, 75, .	2.5	117
7 5	Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Applied Physics Letters, 2014, 104, .	3.3	116
76	Measurement of the intersubband scattering rate in semiconductor quantum wells by excited state differential absorption spectroscopy. Applied Physics Letters, 1993, 63, 1354-1356.	3.3	115
77	Magneto-transport controlled by Landau polariton states. Nature Physics, 2019, 15, 186-190.	16.7	115
78	Room-temperature, continuous-wave, single-mode quantum-cascade lasers at \hat{l} \hat{s} \hat{s} \hat{s} \hat{s} \hat{s} \hat{s} \hat{s} . Applied Physics Letters, 2005, 86, 041109.	3.3	114
79	Quantum-cascade-laser structures as photodetectors. Applied Physics Letters, 2002, 81, 2683-2685.	3.3	112
80	Low frequency terahertz quantum cascade laser operating from 1.6to1.8THz. Applied Physics Letters, 2006, 89, 231121.	3.3	112
81	Continuous wave operation of a 9.3 \hat{l} 4m quantum cascade laser on a Peltier cooler. Applied Physics Letters, 2001, 78, 1964-1966.	3.3	111
82	Evidence of linear chirp in mid-infrared quantum cascade lasers. Optica, 2018, 5, 948.	9.3	110
83	GeSn Lasers Covering a Wide Wavelength Range Thanks to Uniaxial Tensile Strain. ACS Photonics, 2019, 6, 2462-2469.	6.6	105
84	Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers. Optics Letters, 2001, 26, 887.	3.3	102
85	Quasi-periodic distributed feedback laser. Nature Photonics, 2010, 4, 165-169.	31.4	99
86	Phonon limited intersubband lifetimes and linewidths in a twoâ€dimensional electron gas. Applied Physics Letters, 1994, 64, 872-874.	3.3	98
87	Phase locking of a 15 Terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver. Optics Express, 2009, 17, 1159.	3.4	98
88	Quantum cascade laser: Temperature dependence of the performance characteristics and highTOoperation. Applied Physics Letters, 1994, 65, 2901-2903.	3.3	94
89	Long wavelength infrared (l̂»â‰, 11 l̂ 1 /4m) quantum cascade lasers. Applied Physics Letters, 1996, 69, 2810-2812.	3.3	94
90	Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nature Communications, 2017, 8, 14626.	12.8	93

#	Article	IF	Citations
91	Continuous wave operation of midinfrared (7.4–8.6 μm) quantum cascade lasers up to 110 K temperature. Applied Physics Letters, 1996, 68, 1745-1747.	3.3	91
92	Intersubband linewidths in quantum cascade laser designs. Applied Physics Letters, 2008, 93, .	3.3	89
93	Lasing in strained germanium microbridges. Nature Communications, 2019, 10, 2724.	12.8	89
94	Farâ€infrared generation by doubly resonant difference frequency mixing in a coupled quantum well twoâ€dimensional electron gas system. Applied Physics Letters, 1994, 65, 445-447.	3.3	88
95	Electroluminescence from strain-compensated Si0.2Ge0.8/Si quantum-cascade structures based on a bound-to-continuum transition. Applied Physics Letters, 2002, 81, 4700-4702.	3.3	87
96	Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors. Optics Express, 2005, 13, 8960.	3.4	87
97	Quantum cascade disk lasers. Applied Physics Letters, 1996, 69, 2456-2458.	3.3	86
98	Free-space optical data link using Peltier-cooled quantum cascade laser. Electronics Letters, 2001, 37, 778.	1.0	86
99	Complex-coupled quantum cascade distributed-feedback laser. IEEE Photonics Technology Letters, 1997, 9, 1090-1092.	2.5	85
100	Gain Recovery Dynamics and Photon-Driven Transport in Quantum Cascade Lasers. Physical Review Letters, 2008, 100, 167401.	7.8	85
101	Infrared (4–11 μm) quantum cascade lasers. Solid State Communications, 1997, 102, 231-236.	1.9	84
102	Direct-Gap Gain and Optical Absorption in Germanium Correlated to the Density of Photoexcited Carriers, Doping, and Strain. Physical Review Letters, 2012, 109, 057402.	7.8	84
103	Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction. Applied Physics Letters, 2005, 86, 181101.	3.3	83
104	Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GalnAsâ^•AllnAs quantum-cascade structures. Applied Physics Letters, 2005, 86, 062113.	3.3	83
105	Surface Plasmon Resonance sensor showing enhanced sensitivity for CO_2 detection in the mid-infrared range. Optics Express, 2009, 17, 293.	3.4	82
106	Electric field correlation measurements on the electromagnetic vacuum state. Nature, 2019, 568, 202-206.	27.8	82
107	Mid-infrared (8.5 \hat{l} 1/4m) semiconductor lasers operating at room temperature. IEEE Photonics Technology Letters, 1997, 9, 294-296.	2.5	81
108	Surface-emitting 10.1 \hat{l}^{1} 4m quantum-cascade distributed feedback lasers. Applied Physics Letters, 1999, 75, 3769-3771.	3.3	80

#	Article	IF	Citations
109	High power quantum cascade lasers operating at \hat{l} » \hat{a} % f 87 and 130 \hat{l} 4m. Applied Physics Letters, 2004, 85, 3986-3988.	3.3	80
110	Terahertz Emission from Quantum Cascade Lasers in the Quantum Hall Regime: Evidence for Many Body Resonances and Localization Effects. Physical Review Letters, 2004, 93, 237403.	7.8	80
111	Horn antennas for terahertz quantum cascade lasers. Electronics Letters, 2007, 43, 573.	1.0	78
112	Record‣ow Inhomogeneous Broadening of Siteâ€Controlled Quantum Dots for Nanophotonics. Small, 2010, 6, 1268-1272.	10.0	77
113	On-chip, self-detected terahertz dual-comb source. Applied Physics Letters, 2016, 108, .	3.3	77
114	Compact and ultra-efficient broadband plasmonic terahertz field detector. Nature Communications, 2019, 10, 5550.	12.8	77
115	Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser. Applied Physics Letters, 2006, 89, 091121.	3.3	76
116	Dispersion engineering of quantum cascade laser frequency combs. Optica, 2016, 3, 252.	9.3	76
117	Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. Nature Photonics, 2019, 13, 562-568.	31.4	76
118	Quantum wells with localized states at energies above the barrier height: A Fabry–Perot electron filter. Applied Physics Letters, 1992, 61, 898-900.	3.3	75
119	Low divergence Terahertz photonic-wire laser. Optics Express, 2010, 18, 6390.	3.4	75
120	Strong Coupling in the Far-Infrared between Graphene Plasmons and the Surface Optical Phonons of Silicon Dioxide. ACS Photonics, 2014, 1, 1151-1155.	6.6	75
121	Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser. Optics Letters, 2005, 30, 2584.	3.3	73
122	Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3THz. Applied Physics Letters, 2006, 88, 141102.	3.3	72
123	InP-based quantum cascade detectors in the mid-infrared. Applied Physics Letters, 2006, 88, 241118.	3.3	72
124	Bloch gain in quantum cascade lasers. Nature Physics, 2007, 3, 329-333.	16.7	72
125	Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition. Physical Review X, 2020, 10, .	8.9	72
126	Narrowing of the intersubband electroluminescent spectrum in coupledâ€quantumâ€well heterostructures. Applied Physics Letters, 1994, 65, 94-96.	3.3	71

#	Article	IF	CITATIONS
127	Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser. Applied Physics B: Lasers and Optics, 2004, 79, 907-913.	2.2	71
128	Broadband THz lasing from a photon-phonon quantum cascade structure. Optics Express, 2010, 18, 8043.	3.4	70
129	1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications. Applied Physics Letters, 2015, 107, .	3.3	70
130	Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation. Optics Express, 2015, 23, 33270.	3.4	70
131	Midâ€infrared fieldâ€tunable intersubband electroluminescence at room temperature by photonâ€assisted tunneling in coupledâ€quantum wells. Applied Physics Letters, 1994, 64, 1144-1146.	3.3	69
132	Four-wave mixing in a quantum cascade laser amplifier. Applied Physics Letters, 2013, 102, .	3.3	68
133	Dual comb operation of \hat{i} » \hat{a} $\frac{1}{4}$ 8.2 <i>\hat{i} $\frac{1}{4}$ </i> m quantum cascade laser frequency comb with 1 W optical power. Applied Physics Letters, 2017, 111, .	3.3	68
134	Tunable Fano interference in intersubband absorption. Optics Letters, 1996, 21, 985.	3.3	66
135	Fabrication and Characterization of Molecular Beam Epitaxy Grown Thin-Film GaAs Waveguides for Mid-Infrared Evanescent Field Chemical Sensing. Analytical Chemistry, 2006, 78, 4224-4227.	6.5	66
136	High-power inter-miniband lasing in intrinsic superlattices. Applied Physics Letters, 1998, 72, 2388-2390.	3.3	64
137	Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900Âcm-1. Applied Physics B: Lasers and Optics, 2006, 85, 235-241.	2.2	64
138	Measurement of semiconductor laser gain and dispersion curves utilizing Fourier transforms of the emission spectra. IEEE Photonics Technology Letters, 1999, 11, 1372-1374.	2.5	63
139	Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 \$mu\$m. IEEE Photonics Technology Letters, 2009, 21, 914-916.	2.5	63
140	Small optical volume terahertz emitting microdisk quantum cascade lasers. Applied Physics Letters, 2007, 90, 141114.	3.3	62
141	Excess carrier lifetimes in Ge layers on Si. Applied Physics Letters, 2014, 104, .	3.3	62
142	Short pulse generation and mode control of broadband terahertz quantum cascade lasers. Optica, 2016, 3, 1087.	9.3	62
143	Graphene–Metamaterial Photodetectors for Integrated Infrared Sensing. ACS Photonics, 2016, 3, 936-941.	6.6	62
144	Electrically driven nanopillars for THz quantum cascade lasers. Optics Express, 2013, 21, 10917.	3.4	61

#	Article	IF	CITATIONS
145	Demonstration of high-performance $10.16\hat{l}$ 4m quantum cascade distributed feedback lasers fabricated without epitaxial regrowth. Applied Physics Letters, 1999, 75, 665-667.	3.3	60
146	Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode. Optics Letters, 2004, 29, 1632.	3.3	60
147	High-Performance Bound-to-Continuum Quantum-Cascade Lasers for Broad-Gain Applications. IEEE Journal of Quantum Electronics, 2008, 44, 36-40.	1.9	60
148	Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz. Applied Physics Letters, 2011, 99, .	3.3	60
149	Mid-infrared frequency comb from a ring quantum cascade laser. Optica, 2020, 7, 162.	9.3	60
150	Mid-Infrared Quantum Cascade Lasers for Flow Injection Analysis. Analytical Chemistry, 2000, 72, 1645-1648.	6.5	59
151	Frequency noise of free-running 46 μm distributed feedback quantum cascade lasers near room temperature. Optics Letters, 2011, 36, 3109.	3.3	59
152	Long-wavelength (9.5-11.5 \hat{l} /4m) microdisk quantum-cascade lasers. IEEE Journal of Quantum Electronics, 1997, 33, 1567-1573.	1.9	58
153	Long-wavelength (λâ‰^16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Applied Physics Letters, 2001, 79, 4271-4273.	3.3	58
154	Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning. IEEE Journal of Quantum Electronics, 2008, 44, 1083-1088.	1.9	58
155	Possible observation of impurity effects on conductance quantization. Physical Review B, 1990, 42, 3217-3219.	3.2	57
156	Quantum cascade laser combs: effects of modulation and dispersion. Optics Express, 2015, 23, 1651.	3.4	57
157	Few-Electron Ultrastrong Light-Matter Coupling at 300 GHz with Nanogap Hybrid LC Microcavities. Nano Letters, 2017, 17, 7410-7415.	9.1	57
158	Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect. Science, 2022, 375, 1030-1034.	12.6	57
159	InGaAs–AlInAsâ^•InP terahertz quantum cascade laser. Applied Physics Letters, 2005, 87, 141107.	3.3	56
160	23GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35μm. Applied Physics Letters, 2006, 89, 061119.	3.3	56
161	Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere. Optics Letters, 2006, 31, 2012.	3.3	56
162	Distributed-Feedback Quantum-Cascade Lasers at 9 \$mu\$m Operating in Continuous Wave Up to 423 K. IEEE Photonics Technology Letters, 2009, 21, 814-816.	2.5	56

#	Article	IF	CITATIONS
163	Quantum dot admittance probed at microwave frequencies with an on-chip resonator. Physical Review B, 2012, 86, .	3.2	56
164	Continuous-wave operation of far-infrared quantum cascade lasers. Electronics Letters, 2002, 38, 1675.	1.0	55
165	Complex-coupled photonic crystal THz lasers with independent loss and refractive index modulation. Optics Express, 2011, 19, 10707.	3.4	55
166	Characterization of GaAs/(GaAs)n(AlAs)msurfaceâ€emitting laser structures through reflectivity and highâ€resolution electron microscopy measurements. Journal of Applied Physics, 1989, 66, 1023-1032.	2.5	54
167	Room temperature mid-infrared quantum cascade lasers. Electronics Letters, 1996, 32, 560.	1.0	54
168	Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler. Applied Physics Letters, 2003, 83, 1929-1931.	3.3	53
169	Terahertz quantum cascade lasers based on two-dimensional photonic crystal resonators. Optics Express, 2008, 16, 5206.	3.4	53
170	Two-well quantum cascade laser optimization by non-equilibrium Green's function modelling. Applied Physics Letters, 2018, 112, .	3.3	53
171	High-resolution and gapless dual comb spectroscopy with current-tuned quantum cascade lasers. Optics Express, 2020, 28, 6197.	3.4	53
172	Electrically tunable, high performance quantum cascade laser. Applied Physics Letters, 2010, 96, .	3.3	52
173	Direct link of a mid-infrared QCL to a frequency comb by optical injection. Optics Letters, 2012, 37, 1011.	3.3	52
174	Doping in quantum cascade lasers. I. InAlAs–InGaAsâ^•InP midinfrared devices. Journal of Applied Physics, 2006, 100, 043101.	2.5	51
175	Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies. Applied Physics Letters, 2006, 89, 141116.	3.3	51
176	On-chip dual-comb based on quantum cascade laser frequency combs. Applied Physics Letters, 2015, 107,	3.3	51
177	On-chip mid-infrared and THz frequency combs for spectroscopy. Applied Physics Letters, 2019, 114, .	3.3	51
178	Mid-infrared single-photon counting. Optics Letters, 2006, 31, 1094.	3.3	50
179	Room temperature terahertz polariton emitter. Applied Physics Letters, 2012, 101, .	3.3	50
180	Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission. Applied Physics Letters, 2012, 100, .	3.3	50

#	Article	IF	Citations
181	Electrically tunable graphene anti-dot array terahertz plasmonic crystals exhibiting multi-band resonances. Optica, 2015, 2, 135.	9.3	50
182	Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics, 2018, 7, 237-242.	6.0	49
183	Quantum cascade unipolar intersubband light emitting diodes in the 8–13 Î⅓m wavelength region. Applied Physics Letters, 1995, 66, 4-6.	3.3	48
184	Strong light-matter coupling at terahertz frequencies at room temperature in electronic LC resonators. Applied Physics Letters, 2010, 97, .	3.3	48
185	Germanium under High Tensile Stress: Nonlinear Dependence of Direct Band Gap vs Strain. ACS Photonics, 2016, 3, 1907-1911.	6.6	48
186	Silicon shines on. Nature, 2005, 433, 691-692.	27.8	47
187	Quantum cascade laser: An intersub-band semiconductor laser operating above liquid nitrogen temperature. Electronics Letters, 1994, 30, 865.	1.0	46
188	Mid-infrared external-cavity quantum-cascade laser. Optics Letters, 2002, 27, 1788.	3.3	45
189	Role of elastic scattering mechanisms in GalnAsâ^•AllnAs quantum cascade lasers. Applied Physics Letters, 2006, 89, 172120.	3.3	45
190	Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies. Analyst, The, 2014, 139, 2039-2046.	3. 5	45
191	Room temperature operation of <i>n</i> -type Ge/SiGe terahertz quantum cascade lasers predicted by non-equilibrium Green's functions. Applied Physics Letters, 2019, 114, .	3.3	45
192	Dissipative Kerr solitons in semiconductor ring lasers. Nature Photonics, 2022, 16, 142-147.	31.4	45
193	Stand-alone system for high-resolution, real-time terahertz imaging. Optics Express, 2012, 20, 2772.	3.4	44
194	Fully automatized quantum cascade laser design by genetic optimization. Applied Physics Letters, 2012, 101, .	3.3	44
195	High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line. Applied Physics Letters, 2013, 102, .	3.3	44
196	Injection locking of midâ€infrared quantum cascade laser at 14 GHz, by direct microwave modulation. Laser and Photonics Reviews, 2014, 8, 443-449.	8.7	44
197	Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions. Applied Physics Letters, 2014, 105, .	3.3	44
198	Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy. Optics Express, 2016, 24, 25943.	3.4	44

#	Article	IF	CITATIONS
199	Rf-modulation of mid-infrared distributed feedback quantum cascade lasers. Optics Express, 2016, 24, 3294.	3.4	44
200	Photon-Driven Broadband Emission and Frequency Comb RF Injection Locking in THz Quantum Cascade Lasers. ACS Photonics, 2020, 7, 784-791.	6.6	44
201	Positive Cross Correlations in a Normal-Conducting Fermionic Beam Splitter. Physical Review Letters, 2006, 96, 046804.	7.8	43
202	Influence of InAs, AlAs δlayers on the optical, electronic, and thermal characteristics of strain-compensated GalnAsâ̂•AllnAs quantum-cascade lasers. Applied Physics Letters, 2007, 91, .	3.3	43
203	Intrinsic linewidth of quantum cascade laser frequency combs. Optica, 2015, 2, 836.	9.3	43
204	Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells. Physical Review Letters, 1993, 71, 3573-3576.	7.8	42
205	Room-temperature continuous-wave operation of an external-cavity quantum cascade laser. Optics Letters, 2007, 32, 2792.	3.3	42
206	16.5μm quantum cascade detector using miniband transport. Applied Physics Letters, 2007, 90, 231111.	3.3	42
207	High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell. Applied Physics Letters, 2010, 96, .	3.3	42
208	Singlemode quantum cascade lasers with power dissipation below 1â€W. Electronics Letters, 2012, 48, 646.	1.0	42
209	Femtosecond pulses from a mid-infrared quantum cascade laser. Nature Photonics, 2021, 15, 919-924.	31.4	42
210	Turn-key compact high temperature terahertz quantum cascade lasers: imaging and room temperature detection. Optics Express, 2006, 14, 1829.	3.4	41
211	Roadmap on multimode light shaping. Journal of Optics (United Kingdom), 2022, 24, 013001.	2.2	41
212	High-power long-wavelength (/spl lambda//spl sim/11.5 \hat{l} /4m) quantum cascade lasers operating above room temperature. IEEE Photonics Technology Letters, 1998, 10, 1100-1102.	2.5	40
213	Buried heterostructure quantum cascade lasers with a large optical cavity waveguide. IEEE Photonics Technology Letters, 2000, 12, 1450-1452.	2.5	40
214	High power Sb-free quantum cascade laser emitting at 3.3â€,μm above 350 K. Applied Physics Letters, 2011, 98, .	3.3	40
215	Dual-wavelength quantum cascade laser for trace gas spectroscopy. Applied Physics Letters, 2014, 105, .	3.3	40
216	Raman-strain relations in highly strained Ge: Uniaxial ⟠100⟠©, ⟠110⟠© and biaxial (001) stress. Journal of Applied Physics, 2017, 121, .	2.5	40

#	Article	IF	Citations
217	Measurement of far-infrared waveguide loss using a multisection single-pass technique. Applied Physics Letters, 2001, 78, 1967-1969.	3.3	39
218	Frequency stability characterization of a quantum cascade laser frequency comb. Laser and Photonics Reviews, 2016, 10, 623-630.	8.7	39
219	A patch-array antenna single-mode low electrical dissipation continuous wave terahertz quantum cascade laser. Applied Physics Letters, 2016, 109, .	3.3	39
220	Electro-optic interface for ultrasensitive intracavity electric field measurements at microwave and terahertz frequencies. Optica, 2020, 7, 498.	9.3	39
221	Mesoscopic phenomena in semiconductor nanostructures by quantum design. Journal of Mathematical Physics, 1996, 37, 4775-4792.	1.1	38
222	Long-wavelength (/spl lambda/=10 /spl mu/m) quadrupolar-shaped GaAs-AlGaAs microlasers. IEEE Journal of Quantum Electronics, 2000, 36, 458-464.	1.9	38
223	Microfluidic tuning of distributed feedback quantum cascade lasers. Optics Express, 2006, 14, 11660.	3.4	38
224	Terahertz quantum Hall effect for spin-split heavy-hole gases in strained Ge quantum wells. New Journal of Physics, 2016, 18, 113036.	2.9	38
225	Short wavelength (4νm) quantum cascade detector based on strain compensated InGaAs∕InAlAs. Applied Physics Letters, 2008, 92, .	3.3	37
226	Photo-Dember terahertz emitter excited with an Er:fiber laser. Applied Physics Letters, 2011, 98, .	3.3	37
227	Dual-wavelength emission from optically cascaded intersubband transitions. Optics Letters, 1998, 23, 463.	3.3	36
228	Electrically tunable, room-temperature quantum-cascade lasers. Applied Physics Letters, 1999, 75, 1509-1511.	3.3	36
229	Chemical sensing with pulsed QC-DFB lasers operating at 15.6 $\hat{1}$ /4m. Applied Physics B: Lasers and Optics, 2002, 75, 351-357.	2.2	36
230	High quality factor, fully switchable terahertz superconducting metasurface. Applied Physics Letters, 2014, 105, .	3.3	36
231	An electrically pumped phonon-polariton laser. Science Advances, 2019, 5, eaau1632.	10.3	36
232	Polaritonic nonlocality in light–matter interaction. Nature Photonics, 2021, 15, 690-695.	31.4	36
233	Population inversion by resonant tunneling in quantum wells. Applied Physics Letters, 2007, 91, .	3.3	35
234	Simultaneous measurement of NO and NO_2 by dual-wavelength quantum cascade laser spectroscopy. Optics Express, 2015, 23, 1512.	3.4	35

#	Article	IF	CITATIONS
235	Impact of interface roughness distributions on the operation of quantum cascade lasers. Optics Express, 2015, 23, 5201.	3.4	35
236	Subcycle measurement of intensity correlations in the terahertz frequency range. Physical Review A, 2016, 93, .	2.5	35
237	Plasmon-enhanced waveguide for dispersion compensation in mid-infrared quantum cascade laser frequency combs. Optics Letters, 2017, 42, 1604.	3.3	35
238	Sequential resonant tunneling in quantum cascade lasers. Physical Review B, 2008, 78, .	3.2	34
239	Influence of the growth temperature on the performances of strain-balanced quantum cascade lasers. Applied Physics Letters, 2011, 98, .	3.3	34
240	Far-Infrared Quantum Cascade Lasers Operating in the AlAs Phonon Reststrahlen Band. ACS Photonics, 2016, 3, 2280-2284.	6.6	34
241	Three-Dimensional Phase Modulator at Telecom Wavelength Acting as a Terahertz Detector with an Electro-Optic Bandwidth of 1.25 Terahertz. ACS Photonics, 2018, 5, 1398-1403.	6.6	34
242	Intersubband emission in double-well structures with quantum interference in absorption. Applied Physics Letters, 1997, 71, 3477-3479.	3.3	33
243	MBE growth of terahertz quantum cascade lasers. Journal of Crystal Growth, 2005, 278, 756-764.	1.5	33
244	Broadband external cavity tuning in the 3-4 <i>μ</i> m window. Applied Physics Letters, 2013, 103, .	3.3	33
245	Accurate strain measurements in highly strained Ge microbridges. Applied Physics Letters, 2016, 108, .	3.3	33
246	Phase modulation in GaAs/AlGaAs double heterostructures. I. Theory. Journal of Applied Physics, 1990, 67, 6998-7005.	2.5	32
247	Self-starting harmonic comb emission in THz quantum cascade lasers. Applied Physics Letters, 2021, 118,	3.3	32
248	Pulsed and continuous-wave operation of long wavelength infrared (λ=9.3 μm) quantum cascade lasers. IEEE Journal of Quantum Electronics, 1997, 33, 89-93.	1.9	31
249	Midinfrared intersubband absorption on AlGaN/GaN-based high-electron-mobility transistors. Applied Physics Letters, 2002, 80, 2991-2993.	3.3	31
250	Design and fabrication of photonic crystal quantum cascade lasers for optofluidics. Optics Express, 2007, 15, 4499.	3.4	31
251	Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers. Optics Express, 2009, 17, 13031.	3.4	31
252	Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers. Applied Physics Letters, 2010, 97, 221114.	3.3	31

#	Article	IF	CITATIONS
253	Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters. Optics Express, 2015, 23, 29715.	3.4	31
254	Detection of mid-IR radiation by sum frequency generation for free space optical communication. Optics and Lasers in Engineering, 2005, 43, 537-544.	3.8	30
255	Spectral gain profile of a multi-stack terahertz quantum cascade laser. Applied Physics Letters, 2014, 105, .	3.3	30
256	Doping in quantum cascade lasers. II. GaAsâ^•Al0.15Ga0.85As terahertz devices. Journal of Applied Physics, 2006, 100, 043102.	2.5	29
257	Step well quantum cascade laser emitting at 3 THz. Applied Physics Letters, 2009, 94, 041114.	3.3	29
258	Ultrastrong light-matter coupling at terahertz frequencies with split ring resonators and inter-Landau level transitions. Journal of Applied Physics, 2013, 113, 136510.	2.5	29
259	Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters. Applied Physics Letters, 2015, 107, 221108.	3.3	29
260	Tunable dispersion compensation of quantum cascade laser frequency combs. Optics Letters, 2018, 43, 1746.	3.3	29
261	Large area photonic crystal quantum cascade laser with 5 W surface-emitting power. Optics Express, 2019, 27, 22708.	3.4	29
262	Tunable interminiband infrared emission in superlattice electron transport. Applied Physics Letters, 1997, 70, 1796-1798.	3.3	28
263	Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy. Applied Physics Letters, 2003, 83, 4131-4133.	3.3	28
264	Large cavity quantum cascade lasers with InP interstacks. Applied Physics Letters, 2008, 93, .	3.3	28
265	Gain competition in dual wavelength quantum cascade lasers. Optics Express, 2010, 18, 9900.	3.4	28
266	Continuousâ€wave vertically emitting photonic crystal terahertz laser. Laser and Photonics Reviews, 2013, 7, L45.	8.7	28
267	Multi-species trace gas sensing with dual-wavelength QCLs. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	28
268	Orientation dependence of the phase modulation in apâ€njunction GaAs/AlxGa1â^'xAs waveguide. Applied Physics Letters, 1987, 50, 68-70.	3.3	27
269	Intersubband absorption performed on p-type modulation-doped Si0.2Ge0.8/Si quantum wells grown on Si0.5Ge0.5 pseudosubstrate. Applied Physics Letters, 2002, 80, 3274-3276.	3.3	27
270	Femtosecond dynamics of resonant tunneling and superlattice relaxation in quantum cascade lasers. Applied Physics Letters, 2008, 92, 122114.	3.3	27

#	Article	IF	CITATIONS
271	Surface emitting multi-wavelength array of single frequency quantum cascade lasers. Applied Physics Letters, 2015, 106, .	3.3	27
272	Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces. Physical Review B, 2018, 97, .	3.2	27
273	Room-Temperature, Wide-Band, Quantum Well Infrared Photodetector for Microwave Optical Links at 4.9 \hat{l} /4m Wavelength. ACS Photonics, 2018, 5, 3689-3694.	6.6	27
274	Landau polaritons in highly nonparabolic two-dimensional gases in the ultrastrong coupling regime. Physical Review B, 2020, 101, .	3.2	27
275	Inducing new material properties with hybrid light–matter states. Physics Today, 2021, 74, 42-48.	0.3	27
276	Optically pumped GaAs surface-emitting laser with integrated Bragg reflector. Electronics Letters, 1988, 24, 629-630.	1.0	26
277	Far-infrared emission and Stark-cyclotron resonances in a quantum-cascade structure based on photon-assisted tunneling transition. Physical Review B, 2000, 61, 8369-8374.	3.2	26
278	Terahertz intersubband emission in strong magnetic fields. Applied Physics Letters, 2002, 81, 67-69.	3.3	26
279	Spectroscopic study of the $\hat{l}/21$ band of SO2 using a continuous-wave DFB QCL at $9.1\hat{A}\hat{l}/4$ m. Applied Physics B: Lasers and Optics, 2003, 77, 703-706.	2.2	26
280	Intersubband Raman laser from GalnAsâ^•AllnAs double quantum wells. Applied Physics Letters, 2007, 91, 131108.	3.3	26
281	Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation. Applied Physics Letters, 2008, 93, 161110.	3.3	26
282	3.4 THz heterodyne receiver using a hot electron bolometer and a distributed feedback quantum cascade laser. Journal of Applied Physics, 2008, 104, .	2.5	26
283	Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap. Journal of Applied Physics, 2010, 108, .	2.5	26
284	Sb-free quantum cascade lasers in the 3–4 μm spectral range. Semiconductor Science and Technology, 2012, 27, 045013.	2.0	26
285	Electrically tunable terahertz quantum cascade lasers based on a two-sections interdigitated distributed feedback cavity. Applied Physics Letters, 2015, 106, .	3.3	26
286	Room temperature surface emission on large-area photonic crystal quantum cascade lasers. Applied Physics Letters, 2019, 114, .	3.3	26
287	High-power room temperature emission quantum cascade lasers at /spl lambda/=9 /spl mu/m. IEEE Journal of Quantum Electronics, 2005, 41, 1430-1438.	1.9	25
288	Doppler-free saturated-absorption spectroscopy of CO_2 at 43 $\hat{1}$ /4m by means of a distributed feedback quantum cascade laser. Optics Letters, 2006, 31, 3040.	3.3	25

#	Article	IF	CITATIONS
289	Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power. Optics Express, 2013, 21, 19180.	3.4	25
290	Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition. Applied Physics Letters, 2013, 102, .	3.3	25
291	Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 <i>μ</i> m. Applied Physics Letters, 2014, 105, .	3.3	25
292	Gain dynamics in a heterogeneous terahertz quantum cascade laser. Applied Physics Letters, 2018, 113, .	3.3	25
293	Control of Electron-State Coupling in Asymmetric <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ge</mml:mi><mml:mo>/</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mi>Si</mml:mi>Ouantum Wells. Physical Review Applied. 2019. 11</mml:mrow></mml:mrow></mml:mrow></mml:math>	. 3.8 ∂mml:mt	ext>â^'
294	Phase modulation in GaAs/AlGaAs double heterostructures. II. Experiment. Journal of Applied Physics, 1990, 67, 7006-7012.	2.5	24
295	Narrowing of the intersubband absorption spectrum by localization of continuum resonances in a strong electric field. Applied Physics Letters, 1993, 62, 1931-1933.	3.3	24
296	Quantum-well intersub-band electroluminescent diode at \hat{l} » = $5\hat{l}$ ½m. Electronics Letters, 1993, 29, 2230.	1.0	24
297	Gain measurements on GaAs-based quantum cascade lasers using a two-section cavity technique. IEEE Journal of Quantum Electronics, 2000, 36, 736-741.	1.9	24
298	Characterization and modeling of quantum cascade lasers based on a photon-assisted tunneling transition. IEEE Journal of Quantum Electronics, 2001, 37, 448-455.	1.9	24
299	Free-running 91-µm distributed-feedback quantum cascade laser linewidth measurement by heterodyning with a C^18O_2 laser. Optics Letters, 2003, 28, 704.	3.3	24
300	Quantum cascade lasers with large optical waveguides. IEEE Photonics Technology Letters, 2006, 18, 544-546.	2.5	24
301	Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector. Applied Physics Letters, 2010, 97, .	3.3	24
302	Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling. New Journal of Physics, 2014, 16, 033005.	2.9	24
303	Mid-infrared quantum cascade laser frequency combs with a microstrip-like line waveguide geometry. Applied Physics Letters, 2021, 118, .	3.3	24
304	Loss-coupled distributed feedback far-infrared quantum cascade lasers. Electronics Letters, 2005, 41, 419.	1.0	23
305	Terahertz quantum cascade lasers based on. Journal of Crystal Growth, 2009, 311, 1939-1943.	1.5	23
306	Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae. Optics Express, 2009, 17, 18387.	3.4	23

#	Article	IF	Citations
307	Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz. Applied Physics Letters, 2014, 104, .	3.3	23
308	Coupledâ€Waveguides for Dispersion Compensation in Semiconductor Lasers. Laser and Photonics Reviews, 2018, 12, 1700323.	8.7	23
309	Controlling Quantum Cascade Laser Optical Frequency Combs through Microwave Injection. Laser and Photonics Reviews, 2021, 15, 2100242.	8.7	23
310	Strong confinement in terahertz intersubband lasers by intense magnetic fields. Physical Review B, 2007, 76, .	3.2	22
311	Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis. Photonics, 2016, 3, 24.	2.0	22
312	Dispersion in a broadband terahertz quantum cascade laser. Applied Physics Letters, 2016, 109, .	3.3	22
313	High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers. ACS Photonics, 2017, 4, 957-962.	6.6	22
314	Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	22
315	Continuous wave operation of quantum cascade lasers based on vertical transitions at λ=4.6μm. Superlattices and Microstructures, 1996, 19, 337-345.	3.1	21
316	Quantum cascade lasers for open- and closed-path measurement of trace gases., 2002, 4817, 22.		21
317	Ozone detection by differential absorption spectroscopy at ambient pressure with a 9.6�?m pulsed quantum-cascade laser. Applied Physics B: Lasers and Optics, 2004, 78, 249-256.	2.2	21
318	Imaging at 34 THz with a quantum-cascade laser. Applied Optics, 2005, 44, 121.	2.1	21
319	Probing quantum efficiency by laser-induced hot-electron cooling. Applied Physics Letters, 2009, 94, 021115.	3.3	21
320	Multi-beam multi-wavelength semiconductor lasers. Applied Physics Letters, 2009, 95, .	3.3	21
321	High performance 4.7 THz GaAs quantum cascade lasers based on four quantum wells. New Journal of Physics, 2016, 18, 123004.	2.9	21
322	Bayesian Optimization of Terahertz Quantum Cascade Lasers. Physical Review Applied, 2020, 13, .	3.8	21
323	High-speed CMOS-compatible III-V on Si membrane photodetectors. Optics Express, 2021, 29, 509.	3.4	21
324	High average power first-order distributed feedback quantum cascade lasers. IEEE Photonics Technology Letters, 2000, 12, 1610-1612.	2.5	20

#	Article	IF	CITATIONS
325	Coupling Surface Plasmon Polariton Modes to Complementary THz Metasurfaces Tuned by Inter Metaâ€Atom Distance. Advanced Optical Materials, 2017, 5, 1600884.	7.3	20
326	$\label{lem:multisubband} Multisubband Plasmons in Doped O Quantum Wells. Physical Review Applied, 2018, 10, .$	3.8	20
327	An ultrastrongly coupled single terahertz meta-atom. Nature Communications, 2022, 13, 2528.	12.8	20
328	Interior contacts for probing the equilibrium between magnetic edge channels in the quantum Hall effect. Physical Review B, 1991, 43, 9332-9335.	3.2	19
329	The temperature dependence of key electro-optical characteristics for mid-infrared emitting quantum cascade lasers. Proceedings of SPIE, 2011, , .	0.8	19
330	Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers. Applied Physics Letters, 2014, 104, 011107.	3.3	19
331	Broadband superluminescence, 59î¼m to 72î¼m, of a quantum cascade gain device. Optics Express, 2015, 23, 7184.	3.4	19
332	High <i>T</i> _c Superconducting THz Metamaterial for Ultrastrong Coupling in a Magnetic Field. ACS Photonics, 2018, 5, 3977-3983.	6.6	19
333	Population inversion by resonant magnetic confinement in terahertz quantum-cascade lasers. Applied Physics Letters, 2003, 83, 3453-3455.	3.3	18
334	Application of terahertz quantum-cascade lasers to semiconductor cyclotron resonance. Optics Letters, 2004, 29, 122.	3.3	18
335	Inter-Landau level scattering and LO-phonon emission in terahertz quantum cascade laser. Applied Physics Letters, 2007, 91, .	3.3	18
336	Second harmonic generation in (111)-oriented InP-based quantum cascade laser. Journal of Applied Physics, 2007, 101, 103107.	2.5	18
337	Magnetically assisted quantum cascade laser emitting from 740 GHz to 1.4 THz. Applied Physics Letters, 2010, 97, 081110.	3.3	18
338	Terahertz quantum cascade lasers based on quaternary AllnGaAs barriers. Applied Physics Letters, 2013, 103, 041103.	3.3	18
339	Dual-comb spectroscopy using plasmon-enhanced-waveguide dispersion-compensated quantum cascade lasers. Optics Letters, 2018, 43, 4522.	3.3	18
340	Terahertz Intersubband Electroluminescence from Nonpolar m-Plane ZnO Quantum Cascade Structures. ACS Photonics, 2021, 8, 343-349.	6.6	18
341	Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks. Journal of Applied Physics, 2015, 118, .	2.5	17
342	Lattice strain and tilt mapping in stressed Ge microstructures using X-ray Laue micro-diffraction and rainbow filtering. Journal of Applied Crystallography, 2016, 49, 1402-1411.	4.5	17

#	Article	IF	Citations
343	High power and single mode quantum cascade lasers. Optics Express, 2016, 24, 10694.	3.4	17
344	THz Ultrastrong Coupling in an Engineered Fabry–Perot Cavity. ACS Photonics, 2021, 8, 2692-2698.	6.6	17
345	Quantum cascade laser: A new optical source in the mid-infrared. Infrared Physics and Technology, 1995, 36, 99-103.	2.9	16
346	Terahertz quantum cascade lasers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 215-231.	3.4	16
347	Tuning the intersubband absorption in strained AlAsSb∕InGaAs quantum wells towards the telecommunications wavelength range. Journal of Applied Physics, 2006, 100, 116104.	2.5	16
348	A terahertz quantum cascade laser grown by low-pressure metalorganic vapor phase epitaxy. Applied Physics Letters, 2008, 92, .	3.3	16
349	Time-Resolved Investigations of Electronic Transport Dynamics in Quantum Cascade Lasers Based on Diagonal Lasing Transition. IEEE Journal of Quantum Electronics, 2009, 45, 307-321.	1.9	16
350	Purcell effect in the inductor-capacitor laser. Optics Letters, 2011, 36, 2623.	3.3	16
351	Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs. Photonics, 2016, 3, 26.	2.0	16
352	SI-traceable frequency dissemination at 1572.06Â nm in a stabilized fiber network with ring topology. Optics Express, 2021, 29, 24592.	3.4	16
353	Electrically pumped Terahertz quantum well sources. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 44-47.	2.7	15
354	Long-wavelength (\hat{l} » \hat{a}^{1} / 4 10.5 \hat{l} / 4 m) quantum cascade lasers based on a photon-assisted tunneling transition in strong magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 33-36.	2.7	15
355	High Performance Quantum Cascade Lasers and Their Applications. , 2003, , 61-98.		15
356	A THz quantum cascade detector in a strong perpendicular magnetic field. Semiconductor Science and Technology, 2006, 21, 1743-1746.	2.0	15
357	Continuous-Wave, Room-Temperature Quantum Cascade Lasers. Optics and Photonics News, 2006, 17, 32.	0.5	15
358	Low-consumption (below 2â€W) continuous-wave singlemode quantum-cascade lasers grown by metal-organic vapour-phase epitaxy. Electronics Letters, 2007, 43, 1201.	1.0	15
359	InGaAs/AllnGaAs THz quantum cascade lasers operating up to 195 K in strong magnetic field. New Journal of Physics, 2015, 17, 023050.	2.9	15
360	Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications. Proceedings of SPIE, 2015, , .	0.8	15

#	Article	IF	CITATIONS
361	THz intersubband electroluminescence from n-type Ge/SiGe quantum cascade structures. Applied Physics Letters, 2021, 118 , .	3.3	15
362	Pulses from a mid-infrared quantum cascade laser frequency comb using an external compressor. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1676.	2.1	15
363	Modeling of dark current in midinfrared quantum well infrared photodetectors. Physical Review B, 2009, 79, .	3. 2	14
364	Loss mechanisms of quantum cascade lasers operating close to optical phonon frequencies. Journal of Applied Physics, 2011, 109, 102407.	2.5	14
365	2D patch antenna array on a double metal quantum cascade laser with >90% coupling to a Gaussian beam and selectable facet transparency at 19  THz. Optics Letters, 2016, 41, 4590.	3.3	14
366	Ultra-high amplified strain on 200 mm optical Germanium-On-Insulator (GeOI) substrates: towards CMOS compatible Ge lasers. Proceedings of SPIE, 2016, , .	0.8	14
367	Intensity autocorrelation measurements of frequency combs in the terahertz range. Physical Review A, 2017, 96, .	2.5	14
368	Gate and magnetic field tunable ultrastrong coupling between a magnetoplasmon and the optical mode of an LC cavity. Physical Review B, 2017, 95, .	3.2	14
369	RF Injection of THz QCL Combs at 80 K Emitting over 700 GHz Spectral Bandwidth. Photonics, 2020, 7, 9.	2.0	14
370	Terahertz refractive index matching solution. Optics Express, 2019, 27, 14536.	3 . 4	14
371	Regenerative terahertz quantum detectors. APL Photonics, 2021, 6, .	5.7	14
372	Interchannel Scattering and Interior Contacts in the Quantum Hall Effect. Europhysics Letters, 1991, 15, 331-336.	2.0	13
373	Multi-wavelength operation and vertical emission in THz quantum-cascade lasers. Journal of Applied Physics, 2007, 101, 081726.	2.5	13
374	Room-temperature midinfrared two-photon photodetector. Applied Physics Letters, 2008, 93, .	3.3	13
375	Midinfrared electroluminescence from InAs/InP quantum dashes. Applied Physics Letters, 2010, 97, 221109.	3.3	13
376	Current quantization in an optically driven electron pump based on self-assembled quantumÂdots. Nature Physics, 2011, 7, 423-427.	16.7	13
377	Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy. Journal of Applied Physics, 2012, 112, 033517.	2.5	13
378	Broadband terahertz amplification in a heterogeneous quantum cascade laser. Optics Express, 2015, 23, 3117.	3.4	13

#	Article	IF	CITATIONS
379	Progress in Quantum Cascade Lasers. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 171-192.	0.3	13
380	Intersubband lifetime in quantum wells with transition energies above and below the optical phonon energy. Solid-State Electronics, 1994, 37, 1273-1276.	1.4	12
381	Midinfrared emission from InGaN/GaN-based light-emitting diodes. Applied Physics Letters, 2000, 76, 1495-1497.	3.3	12
382	InP and GaAs-Based Quantum Cascade Lasers. , 2005, , 217-278.		12
383	Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera. , 2007, , .		12
384	Gain measurements in strain-compensated quantum cascade laser. Applied Physics Letters, 2009, 94, 161114.	3.3	12
385	Entering the mid-infrared. Nature Photonics, 2009, 3, 32-34.	31.4	12
386	Ready for take-off. Nature Photonics, 2010, 4, 291-291.	31.4	12
387	Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes. Applied Physics Letters, 2012, 101, 261113.	3.3	12
388	Highly sensitive and fast detection of propane–butane using a 3ÂÎ⅓m quantum cascade laser. Applied Optics, 2013, 52, 4613.	1.8	12
389	Distributed-feedback quantum cascade laser emitting at 32 νm. Optics Express, 2014, 22, 2111.	3.4	12
390	Mixing Properties of Room Temperature Patchâ€Antenna Receivers in a Midâ€Infrared (λÂâ‰^Â9ÂÂμm) Heterod System. Laser and Photonics Reviews, 2020, 14, 1900207.	yne 8.7	12
391	Terahertz absorption-saturation and emission from electron-doped germanium quantum wells. Optics Express, 2020, 28, 7245.	3.4	12
392	Detection of quantum-vacuum field correlations outside the light cone. Nature Communications, 2022, 13, .	12.8	12
393	Photocurrent reversal induced by localized continuum resonances in asymmetric quantum semiconductor structures. Applied Physics Letters, 1993, 63, 2670-2672.	3.3	11
394	Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-Al/sub x/Ga/sub 1-x/As. IEEE Photonics Technology Letters, 1999, 11, 1090-1092.	2.5	11
395	A quantum cascade laser based on an n-i-p-i superlattice. IEEE Photonics Technology Letters, 2000, 12, 263-265.	2.5	11
396	Tuning the dynamic properties of electrons between a quantum well and quantum dots. Journal of Applied Physics, 2012, 112, 043702.	2.5	11

#	Article	IF	CITATIONS
397	Mid infrared quantum cascade laser operating in pure amplitude modulation for background-free trace gas spectroscopy. Optics Express, 2016, 24, 26464.	3.4	11
398	336 $\hat{A}\mu m$ single-mode quantum cascade laser with a dissipation below 250 mW. Optics Express, 2016, 24, 662.	3.4	11
399	Observation of Intersubband Absorption in <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Zn</mml:mi><mml:mi mathvariant="normal">O</mml:mi></mml:mrow></mml:math> Coupled Quantum Wells. Physical	3.8	11
400	Controlling and Phaseâ€Locking a THz Quantum Cascade Laser Frequency Comb by Small Optical Frequency Tuning. Laser and Photonics Reviews, 2021, 15, 2000417.	8.7	11
401	Comparison of phase modulation of GaAs/AlGaAs double heterostructures. Electronics Letters, 1987, 23, 1391.	1.0	11
402	Design and simulation of losses in Ge/SiGe terahertz quantum cascade laser waveguides. Optics Express, 2020, 28, 4786.	3.4	11
403	Absolute frequency referencing in the long wave infrared using a quantum cascade laser frequency comb. Optics Express, 2022, 30, 12891.	3.4	11
404	Chapter 1 Quantum Cascade Laser. Semiconductors and Semimetals, 1999, , 1-83.	0.7	10
405	Spectroscopic determination of the doping and mobility of terahertz quantum cascade structures. Journal of Applied Physics, 2009, 106, .	2.5	10
406	Anomalous Coulomb drag between bilayer graphene and a GaAs electron gas. New Journal of Physics, 2017, 19, 103042.	2.9	10
407	Quantum model of gain in phonon-polariton lasers. Physical Review B, 2018, 97, .	3.2	10
408	Superradiantly Limited Linewidth in Complementary THz Metamaterials on Siâ€Membranes. Advanced Optical Materials, 2018, 6, 1800210.	7.3	10
409	Multi-wavelength distributed feedback quantum cascade lasers for broadband trace gas spectroscopy. Semiconductor Science and Technology, 2019, 34, 083001.	2.0	10
410	Topological charge of finite-size photonic crystal modes. Physical Review B, 2020, 102, .	3.2	10
411	Coherently-averaged dual comb spectrometer at 7.7â€Âµm with master and follower quantum cascade lasers. Optics Express, 2021, 29, 19126.	3.4	10
412	Frequency noise correlation between the offset frequency and the mode spacing in a mid-infrared quantum cascade laser frequency comb. Optics Express, 2020, 28, 8200.	3.4	10
413	Two-dimensional spectroscopy on a THz quantum cascade structure. Nanophotonics, 2020, 10, 171-180.	6.0	10
414	Mid-infrared quantum cascade laser frequency combs based on multi-section waveguides. Optics Letters, 2020, 45, 6462.	3.3	10

#	Article	IF	CITATIONS
415	Buried heterostructure quantum cascade lasers. , 1998, 3284, 231.		9
416	Strategies to Improve Optical Gain and Waveguide Loss in Strain-Compensated SiGe Quantum Cascade Mid-Infrared Emitters. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1642-1646.	2.9	9
417	Direct surface cyclotron resonance terahertz emission from a quantum cascade structure. Applied Physics Letters, 2012, 100, .	3.3	9
418	Top-down method to introduce ultra-high elastic strain. Journal of Materials Research, 2017, 32, 726-736.	2.6	9
419	Broadband monolithic extractor for metal-metal waveguide based terahertz quantum cascade laser frequency combs. Applied Physics Letters, 2017, 111, 021106.	3.3	9
420	Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers. Optics Express, 2017, 25, 11997.	3.4	9
421	Noninvasive Nearâ€Field Spectroscopy of Single Subwavelength Complementary Resonators. Laser and Photonics Reviews, 2020, 14, 1900254.	8.7	9
422	Coexisting frequency combs spaced by an octave in a monolithic quantum cascade laser. Optics Express, 2018, 26, 23167.	3.4	9
423	Monolithic Integration of Mid-Infrared Quantum Cascade Lasers and Frequency Combs with Passive Waveguides. ACS Photonics, 2022, 9, 426-431.	6.6	9
424	Observation of impurity effects on conductance quantization. Superlattices and Microstructures, 1990, 7, 349-351.	3.1	8
425	High power mid-infrared quantum cascade lasers with a molecular beam epitaxy grown InP cladding operating above room temperature. Journal of Crystal Growth, 1997, 175-176, 22-28.	1.5	8
426	Continuous-wave operation of quantum cascade laser emitting near 5.6â€[micro sign]m. Electronics Letters, 2003, 39, 1123.	1.0	8
427	Unified description of resonant tunnelling diodes and terahertz quantum cascade lasers. Electronics Letters, 2010, 46, S46.	1.0	8
428	Rate equations analysis of external-cavity quantum cascade lasers. Journal of Applied Physics, 2010, 107, .	2.5	8
429	Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser. Laser and Photonics Reviews, 2016, 10, 843-848.	8.7	8
430	Complementary split-ring resonator antenna coupled quantum dot infrared photodetector. Applied Physics Letters, 2017, 110, 091106.	3.3	8
431	Asymmetry in polariton dispersion as function of light and matter frequencies in the ultrastrong coupling regime. New Journal of Physics, 2017, 19, 043022.	2.9	8
432	Dual-wavelength THz imaging with quantum cascade lasers. , 2005, 5727, 107.		7

#	Article	IF	CITATIONS
433	Quadratic detection with two-photon quantum well infrared photodetectors. Infrared Physics and Technology, 2009, 52, 419-423.	2.9	7
434	InAs/AllnAs quantum-dash cascade structures with electroluminescence in the mid-infrared. Journal of Crystal Growth, 2011, 323, 491-495.	1.5	7
435	Three Operation Modes for Tb/s All-Optical Switching With Intersubband Transitions in InGaAs/AlAs/AlAsSb Quantum Wells. IEEE Journal of Quantum Electronics, 2012, 48, 885-890.	1.9	7
436	Synchrotron infrared transmission spectroscopy of a quantum cascade laser correlated to gain models. Applied Physics Letters, 2013, 102, 012112.	3.3	7
437	Strain-Compensated InGaAs Terahertz Quantum Cascade Lasers. ACS Photonics, 2016, 3, 2297-2302.	6.6	7
438	Single-Mode Quantum Cascade Laser Array Emitting From a Single Facet. IEEE Photonics Technology Letters, 2016, 28, 1197-1200.	2.5	7
439	An antipodal Vivaldi antenna for improved far-field properties and polarization manipulation of broadband terahertz quantum cascade lasers. Applied Physics Letters, 2020, 116, .	3.3	7
440	Frequency axis for swept dual-comb spectroscopy with quantum cascade lasers. Optics Letters, 2022, 47, 625.	3.3	7
441	Quantum Cascade Distributed Feedback Laser. Optics and Photonics News, 1997, 8, 23.	0.5	6
442	The quantum cascade laser. A device based on two-dimensional electronic subbands. Journal of Optics, 1998, 7, 373-381.	0.5	6
443	High-performance quantum cascade lasers: physics and applications. , 2002, , .		6
444	Terahertz interminiband emission and magneto-transport measurements from a quantum cascade chirped superlattice. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 854-857.	2.7	6
445	Continuous wave operation of quantum cascade lasers. Journal of Crystal Growth, 2003, 251, 697-700.	1.5	6
446	Thermo-optic detection of terahertz radiation from a quantum cascade laser. Applied Physics Letters, 2010, 97, 251103.	3.3	6
447	X-shaped plasmonic antenna on a quantum cascade laser. Applied Physics Letters, 2010, 96, 151105.	3.3	6
448	CMOS-Compatible Hybrid III-V/Si Photodiodes Using a Lateral Current Collection Scheme. , 2018, , .		6
449	Microelectromechanical control of the state of quantum cascade laser frequency combs. Applied Physics Letters, 2019, 115, 021105.	3.3	6
450	Bayesian optimization of quantum cascade detectors. Optical and Quantum Electronics, 2021, 53, 1.	3.3	6

#	Article	IF	CITATIONS
451	Low-drive-voltage, low-loss AlGaAs/GaAs 2 × 2 switch. Electronics Letters, 1988, 24, 1047.	1.0	6
452	Quantum cascade lasers for the mid-infrared region. Physica Scripta, 1996, T66, 57-59.	2.5	5
453	Intersubband quantum cascades in the Si/SiGe material system. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 829-834.	2.7	5
454	Anticrossing between heavy-hole states in Si0.2Ge0.8/Si-coupled quantum wells grown on Si0.5Ge0.5 pseudosubstrate. Applied Physics Letters, 2004, 84, 2497-2499.	3.3	5
455	Recent progress on long wavelength quantum cascade lasers between 1-2 THz. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	5
456	Surface-emitting THz sources based on difference-frequency generation in mid-infrared quantum cascade lasers. Proceedings of SPIE, 2010, , .	0.8	5
457	Engineering conduction and valence band states in site-controlled pyramidal quantum dots. Applied Physics Letters, 2011, 98, 253102.	3.3	5
458	Quantum dot occupation and electron dwell time in the cotunneling regime. New Journal of Physics, 2012, 14, 083003.	2.9	5
459	Quantum devices., 2013,, 1-8.		5
460	Enhanced current injection from a quantum well to a quantum dash in magnetic field. New Journal of Physics, 2014, 16, 083029.	2.9	5
461	Terahertz intersubband polariton tuning by electrical gating. Optics Express, 2014, 22, 2126.	3.4	5
462	Negative free carrier absorption in terahertz quantum cascade lasers. Applied Physics Letters, 2016, 108, .	3.3	5
463	Combining a fully switchable THz superconducting metamaterial with a 2DEG for ultra-strong coupling. European Physical Journal Plus, 2017, 132, 1.	2.6	5
464	Investigation of the Chromatic Dispersion in Two-Section InAs/GaAs Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2017, 29, 2246-2249.	2.5	5
465	Electron Population Dynamics in Optically Pumped Asymmetric Coupled Ge/SiGe Quantum Wells: Experiment and Models. Photonics, 2020, 7, 2.	2.0	5
466	GaAs quantum cascade lasers. , 0, , .		5
467	The Quantum Cascade Laser. Optics and Photonics News, 1994, 5, 15.	0.5	4
468	Valence band intersubband electroluminescence from Si/SiGe quantum cascade structures. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 240-244.	2.7	4

#	Article	IF	Citations
469	Strain compensated Si/SiGe quantum well and quantum cascade on Si0.5Ge0.5 pseudosubstrate. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 315-320.	2.7	4
470	Characterization of iron doped indium phosphide as a current blocking layer in buried heterostructure quantum cascade lasers. Journal of Applied Physics, 2017, 121, 094502.	2.5	4
471	Single-Shot Microsecond-Resolved Spectroscopy of the Bacteriorhodopsin Photocycle with Quantum Cascade Laser Frequency Combs. Biophysical Journal, 2018, 114, 173a.	0.5	4
472	Mid-Infrared spectrometer featuring $\hat{A}\mu\text{-second}$ time resolution based on dual-comb quantum cascade laser frequency combs. , 2017, , .		4
473	Monte Carlo Modeling of Terahertz Quantum Cascade Detectors. , 2020, , .		4
474	Quantum cascade laser absorption spectrometer with a low temperature multipass cell for precision clumped CO ₂ measurement. Optics Express, 2022, 30, 4631.	3.4	4
475	Ultra-low threshold lasing through phase front engineering via a metallic circular aperture. Nature Communications, 2022, 13, 230.	12.8	4
476	Electronic Quarter-Wave Stacks and Bragg Reflectors: Physics of Localized Continuum States in Quantum Semiconductor Structures. , 1994, , 301-311.		3
477	Long wavelength vertical transition quantum cascade lasers operating CW at 110K. Superlattices and Microstructures, 1996, 19, 357-363.	3.1	3
478	Chapter 2 Quantum Interference Effects in Intersubband Transitions. Semiconductors and Semimetals, 1999, 62, 101-128.	0.7	3
479	Edge- and surface-emitting quantum cascade distributed feedback lasers. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 25-28.	2.7	3
480	Si/SiGe quantum cascade structures emitting in the $10\hat{l}$ /4m range. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 89, 30-35.	3.5	3
481	High-power and single-frequency quantum cascade lasers for gas sensing. , 2004, , .		3
482	Transport and absorption in strain-compensated Si/Si1â^'xGex multiple quantum well and cascade structures deposited on Si0.5Ge0.5 pseudosubstrates. Materials Science in Semiconductor Processing, 2005, 8, 401-409.	4.0	3
483	High-power spatial singlemode quantum cascade lasers at 8.9â€[micro sign]m. Electronics Letters, 2005, 41, 418.	1.0	3
484	Trace Sensing with Miniaturized Mid-Infrared Sensors. , 2006, , .		3
485	Microwatt-level terahertz sources based on intra-cavity difference-frequency generation in mid-infrared quantum cascade lasers. , 2008, , .		3
486	Modeling of dark current in mid-infrared quantum-well infrared photodetectors. Infrared Physics and Technology, 2009, 52, 220-223.	2.9	3

#	Article	IF	CITATIONS
487	Transmission Properties of Plasmonic Metamaterial Quantum Cascade Lasers. IEEE Photonics Technology Letters, 2010, 22, 1217-1219.	2.5	3
488	Photocurrent spectroscopy of site-controlled pyramidal quantum dots. Applied Physics Letters, 2012, 101, 031110.	3.3	3
489	Terahertz LC Microcavities: From Quantum Cascade Lasers to Ultrastrong Light-Matter Coupling. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 393-404.	2.2	3
490	Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity. Applied Physics Letters, 2014, 104, 051102.	3.3	3
491	QUANTUM CASCADE LASERS., 1995,,.		3
492	APPLIED PHYSICS: Smaller, Faster Midinfrared Lasers., 2000, 290, 1713-1714.		2
493	Recent Results on the Road to a SiGe Quantum Cascade Laser. Materials Research Society Symposia Proceedings, 2004, 832, 188.	0.1	2
494	Room-temperature continuous-wave single-mode quantum cascade lasers. , 2006, 6133, 613301.		2
495	Femtosecond pumpâ€probe studies of carrier transport and gain dynamics in quantum cascade lasers. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 225-228.	0.8	2
496	Hot electron effects and nanoscale heat transfer in Terahertz quantum cascade lasers. Proceedings of SPIE, 2009, , .	0.8	2
497	Lasing high in k-space. Nature Photonics, 2009, 3, 11-12.	31.4	2
498	Bloch gain in quantum cascade lasers at high temperature. Applied Physics Letters, 2009, 94, 031102.	3.3	2
499	Operation of a Wideband Terahertz Superconducting Bolometer Responding to Quantum Cascade Laser Pulses. Journal of Low Temperature Physics, 2012, 167, 911-916.	1.4	2
500	Physical Origin of Frequency Noise and Linewidth in Mid-IR DFB Quantum Cascade Lasers. , 2013, , .		2
501	Influence of resonator design on ultrastrong coupling between a two-dimensional electron gas and a THz metamaterial. Proceedings of SPIE, 2013, , .	0.8	2
502	Strained Ge microbridges to obtain a direct bandgap laser. , 2014, , .		2
503	Hydride vapour phase epitaxy assisted buried heterostructure quantum cascade lasers for sensing applications. , 2015, , .		2
504	A novel patch-array antenna single-mode low electrical dissipation continuous wave Terahertz Quantum Cascade Laser. , 2016, , .		2

#	Article	IF	Citations
505	Measuring intensity correlations of a THz quantum cascade laser around its threshold at sub-cycle timescales. Proceedings of SPIE, 2016, , .	0.8	2
506	Disorder effects in InAs/GaSb topological insulator candidates. Physical Review B, 2017, 95, .	3.2	2
507	High-sensitivity intensity correlation measurements for photon statistics at terahertz frequencies. Proceedings of SPIE, 2017, , .	0.8	2
508	Intersubband absorption in m-plane ZnO/ZnMgO MQWs. Proceedings of SPIE, 2017, , .	0.8	2
509	Waveguide Embedding of a Double-Metal 1.9-THz Quantum Cascade Laser: Design, Manufacturing, and Results. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 609-613.	3.1	2
510	Mode stabilization in quantum cascade lasers via an intra-cavity cascaded nonlinearity. Optics Express, 2017, 25, 1847.	3.4	2
511	Numerical Optimization of Quantum Cascade Detector Heterostructures. , 2020, , .		2
512	Ensemble Monte Carlo modeling of quantum cascade detectors. Journal of Applied Physics, 2021, 130, 203103.	2.5	2
513	Glass-in-glass infiltration for 3D micro-optical composite components. Optics Express, 2022, 30, 13603.	3.4	2
514	Quantum cascade lasers based on superlattice active regions and n-i-p-i doping. , 0, , .		1
515	InGaAs/GaAs vertical cavity surface emitting laser with hybrid top mirror. Microelectronic Engineering, 1992, 18, 267-272.	2.4	1
516	New optical absorption and photocurrent reversal phenomena induced by localized continuum resonances in quantum well heterostructures. Solid-State Electronics, 1994, 37, 1191-1194.	1.4	1
517	<title>Continuous-wave quantum cascade lasers in the 4- to 10-um wavelength region</title> ., 1996,,.		1
518	Recent advances in quantum cascade lasers. , 0, , .		1
519	Unipolar mid-infrared semiconductor lasers. , 0, , .		1
520	Mid-IR room temperature quantum cascade lasers. , 1997, 3001, 264.		1
521	High-performance, widely tunable, single-mode, mid-infrared distributed feedback quantum cascade lasers. , 1998, , .		1
522	Tunable distributed-feedback quantum-cascade lasers for gas-sensing applications., 1998, 3285, 144.		1

#	Article	lF	Citations
523	InP- and GaAs-based quantum cascade lasers. , 0, , .		1
524	Continuous wave operation of buried heterostructure quantum cascade lasers. , 0, , .		1
525	Intersubband-electroluminescence from Si/SiGe quantum cascade structures., 2001,,.		1
526	High power (>400 mW) long wavelength 16 /spl mu/m room temperature quantum cascade laser. , 2001, , .		1
527	Application of the quantum cascade laser principle to the Si/SiGe material system., 2001,,.		1
528	Continuous wave operation of quantum cascade lasers at room temperature., 0,,.		1
529	Chemical sensors based on quantum cascade lasers. , 2002, , .		1
530	Digital Alloy InGaAs/InAlAs Laser Structures Studied by Cross-Sectional Scanning Tunneling Micropscopy. AIP Conference Proceedings, 2003, , .	0.4	1
531	Broadly-tunable external cavity quantum-cascade lasers. , 2005, , .		1
532	Optical control processes in terahertz quantum-cascade laser waveguides. , 0, , .		1
533	Imaging with a terahertz quantum cascade laser for biomedical applications. , 2005, 6010, 114.		1
534	Bio-medical imaging with a terahertz quantum cascade laser. , 2006, , .		1
535	Mid-infrared quantum cascade detectors on InP., 2006,,.		1
536	Photonic lattice-based quantum cascade lasers at terahertz frequencies. , 2006, , .		1
537	External cavity quantum-cascade laser tunable from 8.2 to 10.4 & mp; #x03BC; m using an inhomogenously broadened gain element., 2006, , .		1
538	Novel photonic crystal quantum cascade laser platform. , 2006, , .		1
539	GREAT: the German first light heterodyne instrument for SOFIA. Proceedings of SPIE, 2007, , .	0.8	1
540	Electron Scattering Spectroscopy by High Magnetic Field in Mid-Infrared Quantum Cascade Lasers. AIP Conference Proceedings, 2007, , .	0.4	1

#	Article	IF	CITATIONS
541	Widely Tunable, High Power, Mode-hop Free, CW External Cavity Quantum Cascade Laser at 8.4μm., 2007,,.		1
542	Time-Resolved Studies of Gain Dynamics in Quantum Cascade Laser. AIP Conference Proceedings, 2007, , .	0.4	1
543	Vertically emitting microdisk lasers. , 2008, , .		1
544	Broadband Distributed Feedback Quantum Cascade Laser Array Using A Heterogeneous Cascade. , 2009, , .		1
545	Broadband semiconductor terahertz laser based on heterogeneous cascades., 2011,,.		1
546	Multi-Wavelength QCL Based MIR Spectroscopy for Fluids and Gases., 2013,,.		1
547	Excess carrier lifetimes in Ge layers on Si. , 2013, , .		1
548	Characterization of thin AlSb/AlAs barriers on InAs by mid-infrared intersubband absorption measurements. Applied Physics Letters, 2013, 102, .	3.3	1
549	Terahertz intersubband electroluminescence from InAs quantum cascade light emitting structures. Applied Physics Letters, 2013, 102, 141113.	3.3	1
550	Interaction of single-layer CVD graphene with a metasurface of terahertz split-ring resonators. Proceedings of SPIE, $2013, \ldots$	0.8	1
551	Decoherence mechanisms of Landau level THz excitations in two dimensional electron gases. , 2013, , .		1
552	Recent progress on single-mode quantum cascade lasers. , 2013, , .		1
553	Carrier lifetimes in uniaxially strained Ge micro bridges. , 2014, , .		1
554	Interaction between meta-materials and shallow donors in bulk GaN at THz frequency. Optics Express, 2014, 22, 3199.	3.4	1
555	Continuously tunable ultrastrong light-matter interaction. , 2015, , .		1
556	Pulse generation and spectral optimization of broadband terahertz quantum cascade lasers. , 2016, , .		1
557	Highly strained direct bandgap Germanium cavities for a monolithic laser on Si. , 2016, , .		1
558	New derivatives of bicyclic diamines with antiprotozoal activity. Monatshefte Fþr Chemie, 2016, 147, 369-381.	1.8	1

#	Article	IF	CITATIONS
559	Antiprotozoal activity of bicycles featuring a dimethylamino group at their bridgehead. Bioorganic and Medicinal Chemistry, 2016, 24, 3781-3789.	3.0	1
560	High-quality and homogeneous 200-mm GeOI wafers processed for high strain induction in Ge. Proceedings of SPIE, 2017, , .	0.8	1
561	Lateral interdot coupling among dense ensemble of InAs quantum dots grown on InP substrate observed at cryogenic temperatures. Journal of Physics: Conference Series, 2017, 906, 012008.	0.4	1
562	Towards the full frequency stabilization of quantum cascade laser frequency combs., 2017,,.		1
563	Optimization and Fabrication of Two-Quantum Well THz QCLs Operating above 200 K., 2019,,.		1
564	The Upper Branch Broadening in Ultrastrongly Coupled THz Landau Polaritons. , 2019, , .		1
565	N-Type Ge/SiGe Quantum Cascade Heterostructures for THz Emission. , 2019, , .		1
566	Large Area Surface-Emitting Photonic Crystal Quantum Cascade Laser. , 2019, , .		1
567	Terahertz Generation in Thin-film Lithium Niobate Platform. , 2021, , .		1
568	Frequency Control of a Mid-Infrared Quantum Cascade Laser Frequency Comb by Near-Infrared Light Injection and Intensity Modulation. , 2021, , .		1
569	Linewidth Enhancement Factor of Mid-IR Quantum Cascade Lasers. , 2021, , .		1
570	Surface plasmon resonance spectroscopy in the mid-infrared range. , 2008, , .		1
571	Multi-Color Laser Spectroscopy with a Dual-Wavelength Quantum Cascade Laser. , 2014, , .		1
572	High-Resolution and Gapless Dual Comb Spectroscopy with Current-Tuned Quantum Cascade Lasers. , 2020, , .		1
573	Ultra-low Threshold Quantum Cascade Laser. , 2021, , .		1
574	Dual-comb Spectrometer Based on Mid-IR Quantum Cascade Laser Frequency Combs., 2013,,.		1
575	Polarisation independent switching and active separation of TE and TM modes with a GaAs/AlGaAs $2\tilde{A}$ –2 switch. Electronics Letters, 1990, 26, 476.	1.0	1
576	Dual-Comb Spectroscopy based on Quantum Cascade Laser Frequency Combs., 2015,,.		1

#	Article	IF	Citations
577	Patch array antenna coupling of THz source and detector. , 2017, , .		1
578	Design of Dirac-point photonic crystal quantum cascade lasers. , 2017, , .		1
579	Octave-Spaced, Dual-Frequency Comb Quantum Cascade Laser Source in a Single Monolithic Waveguide. , 2018, , .		1
580	Mid-Infrared Frequency Comb from a Ring Quantum Cascade Laser. , 2020, , .		1
581	Ridge-width dependence of the dispersion and performance of mid-infrared quantum cascade laser frequency combs. , 2020, , .		1
582	High-Resolution and Gapless Dual Comb Spectroscopy with Current-Tuned Quantum Cascade Lasers for Environmental Applications. , 2020, , .		1
583	Exceptional point singularities in multi-section DFB lasers. New Journal of Physics, 2022, 24, 053047. Interdash Coupling within Dense Ensembles of Quantum Dashes: Comparison of <mml:math< td=""><td>2.9</td><td>1</td></mml:math<>	2.9	1
584	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mrow><mml:mi>ln</mml:mi><mml:mi>As</mml:mi></mml:mrow>		

#	Article	IF	CITATIONS
595	Chaotic whispering gallery lasers with high power and directional emission. , 1998, , .		О
596	Mid-IR intersubband quantum cascade lasers. , 1998, 3284, 212.		0
597	Electromagnetically induced transparency in a three-subband semiconductor quantum well. , 0, , .		O
598	Room temperature operation of electrically tunable quantum cascade lasers. , 0, , .		0
599	GaAs/Al/sub x/Ga/sub 1-x/As quantum cascade lasers. , 0, , .		O
600	Unipolar semiconductor lasers: new class of devices for the generation of mid-infrared radiation. , 1999, 3828, 24.		0
601	Mid-infrared GaAs/AlGaAs quantum cascade lasers. , 1999, 3625, 579.		O
602	Five years of quantum cascade lasers: progress and challenges. , 1999, 3628, 88.		0
603	Electrically pumped terahertz quantum well sources. , 1999, 3828, 2.		O
604	Quantum cascade lasers: between intersubband physics and applications. , 2000, 3944, 330.		0
605	High-performance (/spl lambda//spl cong/10.4 /spl mu/m) buried heterostructure quantum cascade lasers. , 2000, , .		O
606	Mobile laser photoacoustic spectrometer for multicomponent trace-gas monitoring based on CO/sub 2/- and quantum-cascade lasers as pump sources. , 0, , .		0
607	Mobile photoacoustic trace-gas monitoring using high power quantum cascade lasers as pump sources operated near room temperature. , 2001, , .		O
608	In-the-field optical data link using a high frequency-modulated Peltier-cooled quantum cascade laser operated at 50% duty cycle., 2001,,.		0
609	Quantum cascade laser operation with high duty cycle. , 2001, , .		O
610	Continuous wave operation of quantum cascade lasers., 0,,.		0
611	Chemical sensing with a pulsed 16 microns QC-DFB laser. , 0, , .		0
612	MBE growth of terahertz quantum cascade semiconductor lasers. , 0, , .		0

#	Article	IF	CITATIONS
613	Bloch gain in a quantum cascade laser. , 0, , .		O
614	Continuous-wave operation of quantum cascade lasers above room temperature. , 2002, , .		O
615	Strain-compensated Si/Si0.2Ge0.8 quantum cascade structures grown on Si0.5Ge0.5 pseudo-substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 613-617.	2.7	0
616	Strain Compensated Si/Sige Quantum Cascade Emitters Grown On Sige Pseudosubstrates. , 2003, , 325-330.		0
617	Measurement of mid-IR laser pulses by sum frequency generation. , 0, , .		0
618	Recent advances in quantum cascade laser research and novel applications. , 2003, , .		0
619	High performance mid- and far-infrared quantum cascade lasers. , 0, , .		0
620	Photonic-crystal lasers light up. Physics World, 2004, 17, 27-27.	0.0	0
621	Room-temperature CW operation of (lambda~9 νm) InP-based quantum cascade lasers. , 2004, , .		0
622	Terahertz quantum cascade laser emitting at 160 $\hat{l} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	0.4	0
623	Using photonic crystals to create a quantum cascade lasers at terahertz wavelengths. , 0, , .		O
624	Fabrication and Optical Characterization of Photonic Crystal Quantum Cascade Lasers at Terahertz Frequencies. , 0, , .		0
625	Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction. , 0, , .		0
626	Coherency induced optical gain without population inversion in quantum wells., 2005,,.		0
627	High power /spl lambda/ = 9 /spl mu/m quantum cascade lasers. , 2005, , .		0
628	Strategies to improve optical gain and waveguide loss in SiGe quantum cascade devices., 0,,.		0
629	Recent advances in QCL for optoelectronics., 0, , .		0
630	Vertical emitting Terahertz Quantum Cascade Lasers based on photonic crystal cavities., 2006,,.		0

#	Article	IF	CITATIONS
631	Optofluidic tuning of quantum cascade lasers. , 0, , .		O
632	Recent Progress in Long Wavelength Quantum Cascade Lasers. , 2006, , .		0
633	SiGe Quantum Cascade Structures: Physics, Growth and Technology. , 0, , .		0
634	Coherent instabilities and self-pulsations in Quantum Cascade Lasers. , 2006, , .		0
635	Long wavelength, multi frequency THz quantum cascade lasers. , 2006, , .		0
636	SiGe Quantum Cascade Structures: Physics, Growth and Technology. , 2006, , .		0
637	Comparative Analysis of Bio-Medical Imaging at 3.7 Terahertz with a High Power Quantum Cascade Laser. , 2006, , .		0
638	Ultrafast gain dynamics in a quantum cascade laser. , 2006, , .		0
639	Photon-Driven Transport in Quantum Cascade Lasers. , 2007, , .		0
640	Electrical and Optical Characterization of Microdisk Quantum Cascade Lasers emitting at Terahertz Frequencies., 2007,,.		0
641	Long wavelength Terahertz Quantum Cascade Lasers, emitting down to 1.2 THz., 2007,,.		0
642	A 1 THz quantum cascade laser in strong magnetic field., 2007,,.		0
643	Near room temperature continuous wave operation of an external cavity quantum cascade laser. , 2007, , .		0
644	High-performamce continuous wave quantum cascade lasers with widely spaced operation frequencies. , 2007, , .		0
645	Observation of Photon-driven Electronic Transport in Quantum Cascade Lasers., 2007,,.		0
646	Terahertz quantum cascade lasers with quasi-periodic resonators. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2176-2178.	2.7	0
647	Time-resolved IR spectroscopy of quantum-optics in semiconductors. Infrared Physics and Technology, 2008, 51, 454-457.	2.9	0
648	Optimization of a 3.6-THz quantum cascade laser for real-time imaging with a microbolometer focal plane array. Proceedings of SPIE, 2008, , .	0.8	0

#	Article	IF	CITATIONS
649	Correlation between the subband electronic temperatures and the internal quantum efficiency of THz quantum cascade lasers. , 2008 , , .		0
650	Gain measurements in quantum cascade lasers at high temperatures. , 2008, , .		0
651	Bloch gain in quantum cascade lasers. Proceedings of SPIE, 2008, , .	0.8	0
652	THz quantum cascade lasers grown by low-pressure metalorganic vapor phase epitaxy., 2008,,.		0
653	Terahertz quantum cascade lasers: design and applications. , 2008, , .		0
654	Low divergence single mode edge emitting double metal Terahertz Quantum Cascade Laser. , 2009, , .		0
655	InP based terahertz quantum cascade lasers with 4 quantum well active region design. , 2009, , .		O
656	Entangled photons produced with high-symmetry site-controlled quantum dots., 2009,,.		0
657	In-plane and surface emitting high performance THz pillar type photonic crystal lasers with complete photonic bandgaps. , 2009, , .		0
658	∼1meV inhomogeneous broadening of large area (∼cm ²) arrays of site-controlled pyramidal quantum dots. , 2009, , .		0
659	InP based, terahertz quantum cascade lasers with 4 quantum well active region design. , 2009, , .		0
660	Broadband external cavity quantum cascade laser., 2009,,.		0
661	Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers. , 2009, , .		0
662	Gain/loss device study of narrow-ridge buried heterostructure quantum cascade lasers using broadband infrared transmission. , 2009, , .		0
663	Ultrafast electronic transport in low dimensional semiconductor nanostructures. Proceedings of SPIE, 2009, , .	0.8	0
664	Hot-electron cooling in THz quantum cascade lasers. , 2009, , .		0
665	Correlation between laser-induced hot-electron cooling and quantum efficiency in THz quantum cascade lasers. , 2009, , .		0
666	Modelling transport in quantum cascade lasers: A comparison between theory and experiment. , 2009, , .		0

#	Article	IF	Citations
667	Terahertz conductivity of magnetoexcitons and electrons in semiconductor nanostructures. , 2009, , .		0
668	Intense terahertz generation based on the photo-Dember effect. , 2010, , .		0
669	Broadband THz lasing from a photon-phonon quantum cascade structure emitting from 2.8 to 4.1 THz. , 2010, , .		0
670	Quantum cascade laser oscillating in circuit-based resonator. , 2010, , .		0
671	Recent progress in THz quantum cascade lasers. , 2010, , .		0
672	Broadband quantum cascade lasers from white light sources to tunable broadband single mode sources. , $2010, , .$		0
673	Interview with Professor Jerome Faist. Electronics Letters, 2010, 46, S45.	1.0	0
674	Mid-infrared emission of quantum-dash-based quantum cascade laser structures. , 2010, , .		0
675	THz inter-Landau level emission in a quantum cascade structure. , 2010, , .		0
676	Terahertz quantum cascade lasers: 10 years of active region and material progresses., 2011,,.		0
677	Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers. , 2011, , .		0
678	Cyclotron emission in a THz quantum cascade structure. AIP Conference Proceedings, 2011, , .	0.4	0
679	Electroluminescence of quantum-dash-based quantum cascade laser structures., 2011,,.		0
680	THz Intersubband Polaritons in LC Resonator Structures. AIP Conference Proceedings, 2011, , .	0.4	0
681	Buried-heterostructure phase-locked arrays of mid-infrared quantum cascade lasers., 2011,,.		0
682	Ultra-broadband THz semiconductor laser based on heterogeneous quantum cascade gain medium. , 2011, , .		0
683	Strain-balanced quantum cascade lasers: influence of growth temperature on interface roughness and laser performance., 2011,,.		0
684	Room temperature terahertz intersubband polariton electroluminescence., 2011,,.		0

#	Article	IF	CITATIONS
685	Terahertz emitter based on the lateral photo-Dember effect excited with an Er:fiber laser., 2011,,.		O
686	Broadband quantum cascade lasers for mid-infrared white light applications. , 2011, , .		O
687	Investigation of coherent acoustic phonons in THz quantum cascade laser structures., 2011,,.		O
688	Novel injector schemes for Mid-Infrared Quantum Cascade lasers, toward the genetic optimization of the laser design. , 2012, , .		0
689	Portable real-time THz imaging setup based on QC lasers. , 2012, , .		O
690	Synchrotron Microspectroscopy of Quantum Cascade Laser Devices based on Quantum Wells and Quantum Dashes. , 2012, , .		0
691	Direct link of a mid-infrared quantum cascade laser to a frequency comb by optical injection., 2012,,.		O
692	Mid-IR Broadband Quantum Cascade Laser Frequency-Comb. , 2012, , .		0
693	Nanowire and graphene architectures for Room Temperature THz detection. , 2012, , .		O
694	Surface emitting Terahertz Photonic Crystal Quantum Cascade Laser realized by Bragg boundary condition. , $2012, \dots$		0
695	EC tuning of broadband QCL active region designs around 3.3 Âμm and 8 Âμm. , 2012, , .		O
696	Terahertz photonic crystal quantum cascade laser coupled to a second order Bragg vertical extractor., 2013,,.		0
697	EC tuning of a two color QCL active region design in the 3 to 4 μm region. , 2013, , .		O
698	High power terahertz quantum cascade laser at 63 & amp; #x00B5; m. , 2013, , .		0
699	Transverse-electric polarized intersubband electroluminescence from quantum cascade structures based on InAs/AlInAs quantum dashes. , 2013, , .		O
700	Distributed-Feedback Quantum Cascade Laser at 3.2 & Distributed-Feedba		0
701	High frequency modulation of Mid-InfraRed Quantum Cascade Laser embedded into a micro-strip line. , 2013, , .		O
702	Noise properties of a mid-IR Quantum Cascade Laser Frequency Comb. , 2013, , .		0

#	Article	IF	CITATIONS
703	Progress in quantum cascade lasers: wavelength agility and frequency comb generation., 2013,,.		О
704	Ultra-broadband THz quantum cascade laser operating with regular comb teeth in continuous wave operation. , $2013, , .$		0
705	Broadband homogeneous quantum cascade laser emitting at 2.3 THz., 2013,,.		0
706	Properties and origin of frequency noise in Mid-IR distributed feedback Quantum Cascade Lasers. , 2013, , .		0
707	Ultrastrong light-matter coupling between high-mobility 2DEG and superconducting THz metasurfaces. , 2013, , .		0
708	InGaAs/AlInGaAs THz quantum cascade lasers. , 2013, , .		0
709	An ultra-compact CO <inf>2</inf> isotope analyzer exclusively based on quantum cascade technology. , 2013, , .		O
710	Fully stabilized dual-comb spectrometer based on a mid-IR quantum-cascade-laser frequency comb. , 2013, , .		0
711	Surface Emission Quantum Cascade Lasers Combining First and Second Order DFB gratings. , 2014, , .		O
712	Photocurrent spectroscopy and X-ray microdiffraction study of highly strained germanium nanostructures. , $2015, , .$		0
713	A Direct Band Gap GeSn Laser on Si. , 2015, , .		O
714	Multi-Component Trace Gas Spectroscopy Using Dual-Wavelength Quantum Cascade Lasers. Chimia, 2015, 69, 708-708.	0.6	0
715	Design rules to control the tensile strain in Ge $\$\#x03BC$;-membranes fabricated from GeOI substrates for photonics applications. , 2015 , , .		O
716	Optical spectroscopy on strained Ge microbridges at the transition to a direct band gap., 2015,,.		0
717	Octave-spanning THz quantum cascade laser. , 2015, , .		O
718	Large-area gate-tunable terahertz plasmonic metasurfaces employing graphene based structures. Proceedings of SPIE, 2015, , .	0.8	0
719	All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology. , 2015, , .		0
720	Room Temperature Operation of a Photonic Crystal Quantum Cascade Laser. , 2015, , .		0

#	Article	IF	CITATIONS
721	Highly Efficient Modulation of THz Metamaterials Using Graphene Surface Plasmons., 2015,,.		O
722	Surface emitting, single-mode quantum cascade laser array. , 2015, , .		0
723	Analysis of dual-section DFB-QCLs for spectroscopic applications. , 2016, , .		0
724	On-chip terahertz dual-comb source based on quantum cascade lasers. , 2016, , .		0
725	Broadband monolithic extractor for terahertz quantum cascade laser based frequency combs. , 2016, , .		0
726	THz quantum cascade amplifier for remote sensing applications. , 2016, , .		0
727	Non-linear bandgap strain dependence in highly strained germanium using strain redistribution in 200 mm GeOI wafers for laser applications. , 2016 , , .		O
728	Terahertz quantum Hall effect in spin-split 2D heavy-hole gases. , 2016, , .		0
729	Ultra-strong coupling with spin-split heavy-hole cyclotron resonances in strained Ge quantum wells. , 2016, , .		O
730	Gate tunable magneto-plasmon ultrastrongly coupled to LC cavity. , 2016, , .		0
731	Measuring photon statistics in the terahertz domain. , 2016, , .		O
732	Ultrastrong light-matter coupling at 300 GHz with few (<80) electrons., 2016,,.		0
733	Influence of THz surface plasmon polaritons on complementary metasurfaces., 2016,,.		O
734	Quantum cascade laser frequency combs: physics and applications. , 2016, , .		0
735	Fabrication of 200 mm Germanium-On-Insulator (GeOI): A step toward a Germanium photonic platform. , 2016, , .		O
736	Nonlinear strain dependences in highly strained germanium micromembranes for on-chip light source applications (Conference Presentation). , 2016 , , .		0
737	Ultrastrong light-matter-coupling at 250 GHz. , 2016, , .		O
738	On-chip THz quantum cascade laser dual frequency combs (Conference Presentation)., 2017,,.		0

#	Article	IF	CITATIONS
739	Strong coupling of THz surface plasmon polaritons to complementary metasurfaces (Conference) Tj $ETQq1\ 1\ G$).784314 rgB	BT _d Overlock
740	Passive photonic components and germanium contacts for a 200mm germanium-on-insulator photonic platform (Conference Presentation). , 2017, , .		0
741	Ultrastrong coupling with few (<60) electrons at 280 GHz in single LC nanogap resonators (Conference Presentation). , 2017, , .		O
742	Non-polar ZnO/(Zn,Mg)O heterostructures for intersubband devices: novel applications with an old material system? (Conference Presentation). , 2017, , .		0
743	Broadband monolithic extractors for terahertz quantum cascade laser based frequency combs (Conference Presentation)., 2017,,.		O
744	Self-detection of MIR QCL frequency combs (Withdrawal Notice). Proceedings of SPIE, 2017, , .	0.8	0
745	Ultra-strong coupling with spin-split heavyhole cyclotron resonances in sGe QWs (Conference) Tj ETQq1 1 0.7	84314 rgBT /(Oyerlock 10
746	Electric field and intensity correlations of a terahertz comb based on fast electro-optic sampling (Conference Presentation)., 2017,,.		0
747	Short pulse generation and high power emission of Quantum Cascade lasers. , 2017, , .		O
748	Quantum theory of fast electro-optic correlations. , 2017, , .		0
749	Amplitude modulation in terahertz frequency combs. , 2017, , .		o
750	Recent advances of multispecies mid-IR spectroscopy for mobile applications. , 2017, , .		0
751	Ultrastrong light-matter coupling with few electrons in single LC resonators. , 2017, , .		О
752	Terahertz quantum cascade lasers frequency combs: Wide bandwidth operation and dual-comb on a chip. , 2017, , .		0
753	Cavity mode analysis of highly strained direct bandgap germanium micro-bridge cavities. , 2017, , .		О
754	Dual-wavelength DFB quantum cascade lasers for NO and NO <inf>2</inf> trace gas analysis. , 2017, , .		0
755	Probing and controlling the comb features of a THz QCL. , 2017, , .		О
756	Phase measurement of a mid-IR QCL comb. , 2017, , .		0

#	Article	IF	CITATIONS
757	Highly non-parabolic strained Ge quantum well for THz ultra-strong light-matter coupling. , 2017, , .		O
758	THz surface plasmon polariton modes coupled to complementary metasurfaces tuned by intermeta-atom distance. , 2017, , .		0
759	Waveguide engineering for low dispersion mid-infrared quantum cascade lasers frequency combs. , 2017, , .		O
760	Critical Mode Softening in Ultra-Strong Coupling of Landau Level Transitions to THz Metamaterials Beyond the Hopfield Model. , $2018, \ldots$		0
761	High-T < inf > c < /inf > superconducting metasurfaces for ultra-strong coupling experiments at THz frequencies. , 2018, , .		O
762	Field correlation measurements of photon modes with sub-unity photon occupation per mode inside a Fabry-Perot cavity. , $2018, $, .		0
763	Broadband On-Chip Thz Frequency Combs. , 2018, , .		O
764	Gain recovery dynamics in broadband terahertz quantum cascade lasers. , 2018, , .		0
765	Dual-wavelength DFB quantum cascade lasers for multi-species trace gas spectroscopy. , 2018, , .		O
766	Homogeneous, Bound-to-Continuum THz QCL Active Region Design Featuring 1.65 THz Emission Bandwidth in CW. , 2019, , .		0
767	Magneto-transport of 2DEGs ultrastrongly coupled to vacuum fields. , 2019, , .		O
768	Inhomogeneous Broadening of a Polaritonic Mode in the Ultrastrong Coupling Regime. , 2019, , .		O
769	A Broadband Polarization-Rotating Vivaldi Antenna for Beam Focusing of Terahertz Quantum Cascade Lasers. , 2019, , .		O
770	GeSn Lasers with Uniaxial Tensile Strain in the Gain Medium. , 2019, , .		0
771	Mid-Infrared Frequency Comb from a Ring Quantum Cascade Laser. , 2019, , .		O
772	Gain dynamics in THz QCLs and its implication for THz comb sources. , 2019, , .		0
773	Spectral Interleaving with Quantum Cascade Laser Frequency Combs. , 2019, , .		O
774	Strained Germanium Lasing in the Mid-Infrared., 2019,,.		0

#	Article	IF	CITATIONS
775	Electron-doped SiGe Quantum Well Terahertz Emitters pumped by FEL pulses. , 2019, , .		O
776	Low RF-Power Injection-Locking and Beatnote Control of Terahertz Quantum Cascade Laser Frequency Combs. , $2019, , .$		0
777	Low-Loss RF Cavity for Quantum Cascade Laser Frequency Combs. , 2019, , .		O
778	Retrieving the Phase Relation of a Quantum Cascade Laser Frequency Comb and Reconstructing its Emission Profile. , $2019, , .$		0
779	Si-based n-type THz Quantum Cascade Emitter. , 2019, , .		O
780	Probe-Sample Interaction in Aperture-type THz Near-Field Microscopy of Complementary Resonators. , 2019, , .		0
781	Strained Germanium Lasing in the Mid-Infrared. , 2019, , .		O
782	GeSn Lasers with Uniaxial Tensile Strain in the Gain Medium. , 2019, , .		0
783	Dispersion measurements of Terahertz Quantum Cascade Fabry-Pérot cavities and VECSELs., 2019,,.		O
784	High-Quality n-Type Ge/SiGe Multilayers for THz Quantum Cascade Lasers. , 2019, , .		0
785	1.65THz Spanning Homogeneous THz Quantum Cascade Laser: Comb Operation and Injection Locking. , $2019,$, .		O
786	THz Quantum Cascade Lasers Operating up to 210 K., 2019, , .		O
787	A broadband polarization-rotating antipodal Vivaldi antenna for improved far-field properties of terahertz quantum cascade lasers. , 2019, , .		O
788	Self-Starting Harmonic Combs in THz Quantum Cascade Lasers. , 2021, , .		0
789	Y-coupled THz Quantum Cascade Laser Frequency Comb. , 2021, , .		O
790	Time-resolved 2D THz-Spectroscopy on a THz quantum cascade structure. , 2021, , .		0
791	Monolithically integrated laser platform for the mid-infrared. , 2021, , .		0
792	Ultra-low threshold quantum cascade laser. , 2021, , .		0

#	Article	IF	CITATIONS
793	Bound-to-continuum Non-perturbative Regime for an Ultrastong Light-matter Coupling. , 2021, , .		О
794	Ultra-low Threshold Quantum Cascade Laser., 2021,,.		O
795	THz electroluminescence from non-polar ZnO quantum cascade structures. , 2021, , .		О
796	Coherent mid-infrared dual-comb spectroscopy enabled by optical injection locking of quantum cascade laser frequency combs., 2021,,.		0
797	Monte Carlo Modeling of a Short Wavelength Strain Compensated Quantum Cascade Detector. , 2021, ,		О
798	Coherent Broadening and Tuning of QCL Frequency Combs via RF-Injection., 2021,,.		0
799	Terahertz intersubband electroluminescence from n-type germanium quantum wells. , 2021, , .		0
800	Demonstration of a Resonantly Amplified Terahertz Quantum Cascade Detector., 2021,,.		0
801	Breakdown of polaritons in ultrastrongly coupled nanophotonic systems. , 2021, , .		O
802	A Broadband Suspended Hollow Vivaldi Antenna for THz Quantum Cascade Lasers. , 2021, , .		0
803	THz Quantum Cascade Laser Frequency Comb based on a Y-coupled Planarized Waveguide. , 2021, , .		O
804	Shifted Wave Interference Fourier Transform Spectroscopy of THz Quantum Cascade Laser Frequency Combs operating above 70 K., 2021,,.		0
805	Spectra Characterization of Ring Quantum Cascade lasers. , 2021, , .		О
806	Pure and Self-starting Harmonic Combs in THz Quantum Cascade Lasers: Theory and Experiments. , 2021, , .		0
807	All-Mid-Infrared Stabilized Quantum Cascade Laser Frequency Comb with 30-kHz Frequency Stability at 7.7 \hat{l} 4m., 2021, , .		О
808	Exploring field correlation measurements on the electromagnetic ground state in non-local regime. , 2021, , .		0
809	Femtosecond pulses from a mid-infrared quantum cascade laser. , 2021, , .		0
810	Y-coupled planarized waveguide THz quantum cascade laser frequency comb., 2021,,.		0

#	Article	IF	CITATIONS
811	Thin-film lithium niobate integrated circuits for terahertz generation and detection., 2021,,.		0
812	Breakdown of Polaritons in Nanophotonic Systems. , 2021, , .		0
813	Resonant Amplification Enhanced Terahertz Quantum Cascade Detection. , 2021, , .		0
814	FM to AM Transition of RF Driven THz QCL Comb States. , 2021, , .		0
815	Far-infrared intersubband luminescence from quantum cascade sources. , 2001, , 89-100.		0
816	$5\hat{l}^{1}\!\!/\!4$ m Intersubband Raman Laser from GalnAs/AlInAs double Quantum Wells. AIP Conference Proceedings, 2007, , .	0.4	0
817	Progress in Long Wavelength Quantum Cascade Lasers. , 2007, , .		0
818	Low threshold step well quantum cascade laser emitting at 3 THz., 2009,,.		0
819	Gain competition in multicolor Quantum Cascade Lasers. , 2010, , .		0
820	Strong coupling of the cyclotron transition of a 2DEG in a THz metamaterial. , $2011,\ldots$		0
821	Strong coupling of the cyclotron transition of a 2DEG in a THz metamaterial. , 2011, , .		O
822	Strong coupling of the cyclotron transition of a 2DEG in a THz metamaterial., 2011,,.		0
823	Ultra-broadband THz semiconductor laser based on heterogeneous quantum cascade gain medium. , 2011, , .		0
824	Junction-up mounted, mid-infrared emitting, continuous-wave DFB quantum cascade lasers with very low (< 900 mW) electrical dissipation at room temperature. , 2012, , .		0
825	Towards an all solid-state dual-comb spectrometer based on mid-infrared QCL frequency comb sources. , 2013, , .		O
826	Modulation of the Optical Absorption by Electric-Field-Induced Quantum Interference in Coupled Quantum Wells., 1994,, 313-319.		0
827	Short (λâ^¼3.4μM) and Long (λâ^¼11.5μM) Wavelength Room Temperature Quantum Cascade Lasers. , 1998	, , 1-8.	O
828	Simultaneous Measurement of NO and NO2 using a Dual-Wavelength Quantum Cascade Laser. , 2015, , .		0

#	Article	IF	CITATIONS
829	Amplification of broadband terahertz pulses in a quantum cascade heterostructure., 2015,,.		O
830	Mid-infrared and THz Quantum cascade laser frequency combs., 2015,,.		O
831	Buried Heterostructure Photonic Crystal Quantum Cascade Laser: Towards 2D Large-area Single-mode Operation. , 2016, , .		0
832	Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation., 2016,,.		O
833	Multi-species Trace Gas Analysis with Dual-section DFB-QCLs. , 2016, , .		O
834	Measuring the frequency stability of a quantum cascade laser frequency comb., 2016,,.		0
835	Quantum-cascade Laser Frequency Combs and Their Application to Dual-comb Spectroscopy. , 2016, , .		O
836	Single-shot microsecond-resolved spectroscopy of the bacteriorhodops in photocycle with quantum cascade laser frequency combs. , 2017, , .		0
837	Multi-species Trace Gas Analysis with Dual-wavelength DFB-QCLs. , 2017, , .		O
838	Superradiantly Limited Linewidth of Complementary THz Split Ring Resonators on Si-Membranes and Surface Plasmon Polaritons. , 2018, , .		0
839	Multi-Species, High-Precision MIR Trace Gas Detection for Environmental Applications. , 2018, , .		O
840	Direct Measurement of the Phase Coherence of Comb Sources. , 2018, , .		0
841	QCL absorption spectroscopy for lightweight and multi-species environmental applications. , 2018, , .		O
842	Tomography of an ultrastrongly coupled polariton state using Quantum Hall transport under irradiation. , 2018, , .		0
843	Hybrid Nano-Gap LC-Metasurface at 300 GHz Ultrastrongly Coupled to Less than 100 Electrons. , 2018, , .		O
844	Standoff detection from diffusely scattering surfaces using dual quantum cascade laser comb spectroscopy. , 2018, , .		0
845	Quantum cascade frequency combs: physics and applications. , 2019, , .		O
846	Optomechanical Control of the State of Chip-Scale Frequency Combs. , 2019, , .		0

#	Article	IF	CITATIONS
847	Over 2W room temperature lasing on a large area photonic crystal quantum cascade laser. , 2019, , .		0
848	Heterogeneous THz quantum cascade lasers: Gain recovery dynamics study., 2019,,.		0
849	Optimization and fabrication of two-quantum well THz QCLs operating above 200 K., 2019,,.		O
850	Optomechanical control of quantum cascade laser frequency combs., 2019,,.		0
851	Terahertz quantum optics in the time-domain: from field correlation measurements on vacuum field fluctuations in free space towards cavity electro-optics. , 2020, , .		0
852	Topological charge of finite-size photonic crystal lasing modes. , 2020, , .		0
853	Broadband THz quantum cascade lasers frequency combs: high temperature operation and harmonic state. , 2020, , .		0
854	Gapless High-Resolution Dual Comb Spectroscopy with Current-Tuned Quantum Cascade Lasers. , 2020, , .		0
855	Integrated Plasmonic Terahertz Field Detector. , 2020, , .		O
856	Noise Correlation Between the Two Degrees of Freedom of a Mid-Infrared Quantum Cascade Laser Frequency Comb. , 2020, , .		0
857	10.1063/5.0004038.1., 2020, , .		0
858	Frequency Comb Operation of a Y-Coupled Planarized THz Quantum Cascade Laser., 2021,,.		0
859	THz Intersubband Emitter based on Silicon. , 2021, , .		O
860	Shifted Wave Interference Fourier Transform Spectroscopy of Harmonic and Fundamental RF Injection-Locked THz Quantum Cascade Laser Frequency Combs. , 2021, , .		0
861	Direct measurement of the linewidth enhancement factor of distributed feedback mid-IR QCLs., 2021,,.		O
862	Terahertz Quantum Cascade Detection Through Regenerative Amplification., 2021,,.		0
863	Correlation between strain and maximum lasing temperature in GeSn microbridges. , 2020, , .		O
864	Continuous wave lasing in strained germanium microbridge. , 2020, , .		0

#	Article	IF	Citations
865	Perspectives on electrically pumped Ge/SiGe QW emitters at THz frequencies. , 2020, , .		O
866	Post-processing GHz-level frequency tuning of THz Quantum Cascade Lasers. , 2020, , .		O
867	Terahertz quantum cascade laser frequency comb operation of a coupled waveguide array., 2020,,.		0
868	Terahertz intersubband electroluminescence from ZnO quantum cascade structures., 2020,,.		0
869	2D - THz-Spectroscopy on a Quantum Cascade Structure. , 2020, , .		O
870	Electro-optic interface for ultrasensitive intra-cavity electric field sensing., 2020,,.		0
871	Femtosecond pulses from a mid-infrared quantum cascade laser. , 2021, , .		O
872	Mid-infrared femtosecond pulses from a quantum cascade laser. , 2022, , .		0
873	Steady state lasing in strained germanium microbridges as fundamental measure for the crossover to direct band gap., 2021,,.		O
874	SiGe Quantum Cascade Structures: Physics, Growth and Technology. , 0, , .		0
875	High-Resolution Quantum Cascade Laser Dual-Comb Spectroscopy with Accurate Absolute Frequency Scale., 2022,,.		O
876	Quantum cascade laser femtosecond pulses for supercontinuum generation. , 2022, , .		0
877	Enhanced comb operation of Quantum Cascade Lasers with a microstrip-like geometry. , 2022, , .		O
878	RF-Injection Controlled Quantum Cascade Lasers. , 2022, , .		0
879	Comb-Calibrated Spectroscopy using a Quantum Cascade Laser Frequency Comb in the Long-Wave Infrared. , 2022, , .		0