Yizhi Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9302215/publications.pdf

Version: 2024-02-01

361413 330143 1,463 44 20 37 citations h-index g-index papers 45 45 45 1748 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Acetonitrile formation from ethane or ethylene through anaerobic ammodehydrogenation. Catalysis Today, 2023, 416, 113751.	4.4	5
2	Ammonia-Assisted Light Alkane Anti-coke Reforming on Isolated ReO _{<i>x</i>} Sites in Zeolite. ACS Catalysis, 2022, 12, 3165-3172.	11.2	6
3	Ultralow-Loading Pt/Zn Hybrid Cluster in Zeolite HZSM-5 for Efficient Dehydroaromatization. Journal of the American Chemical Society, 2022, 144, 11831-11839.	13.7	22
4	Highly selective Sn/HZSM-5 catalyst for ethane ammoxidation to acetonitrile and ethylene. Applied Catalysis A: General, 2021, 610, 117942.	4.3	12
5	Catalytic Light Alkanes Conversion through Anaerobic Ammodehydrogenation. ACS Catalysis, 2021, 11, 7987-7995.	11.2	8
6	Tuning the reactivity of ethylene oligomerization by HZSM-5 framework Al _f proximity. Catalysis Science and Technology, 2020, 10, 4019-4029.	4.1	14
7	Nickel/gallium modified HZSM-5 for ethane aromatization: Influence of metal function on reactivity and stability. Applied Catalysis A: General, 2020, 601, 117629.	4.3	21
8	In Situ Hydrogen Peroxide Production for Selective Oxidation of Benzyl Alcohol over a Pd@Hierarchical Titanium Silicalite Catalyst. ACS Omega, 2020, 5, 16865-16874.	3.5	21
9	Mechanism and Kinetics of Ethane Aromatization According to the Chemical Transient Analysis. Topics in Catalysis, 2020, 63, 1463-1473.	2.8	10
10	Ammoxidation of Ethane to Acetonitrile and Ethylene: Reaction Transient Analysis for the Co/HZSM-5 Catalyst. ACS Omega, 2020, 5, 1669-1678.	3.5	15
11	Ethane Aromatization over Zn-HZSM-5: Early-Stage Acidity/Performance Relationships and Deactivation Kinetics. Industrial & Engineering Chemistry Research, 2019, 58, 17699-17708.	3.7	28
12	Rate and selectivity hysteresis during the carbon monoxide hydrogenation over promoted Co/MnOx catalysts. Nature Communications, 2019, 10, 3953.	12.8	27
13	Sulfur-doped porous carbon supported palladium catalyst for high selective o-chloro-nitrobenzene hydrogenation. Applied Catalysis A: General, 2019, 581, 74-81.	4.3	23
14	Highly efficient hydrogen peroxide direct synthesis over a hierarchical TS-1 encapsulated subnano Pd/PdO hybrid. RSC Advances, 2019, 9, 13398-13402.	3.6	9
15	Progress and prospects in catalytic ethane aromatization. Catalysis Science and Technology, 2018, 8, 1500-1516.	4.1	93
16	Characterization of CoCu- and CoMn-Based Catalysts for the Fischer–Tropsch Reaction Toward Chain-Lengthened Oxygenates. Topics in Catalysis, 2018, 61, 1016-1023.	2.8	10
17	Cobalt–copper based catalysts for higher terminal alcohols synthesis via Fischer–Tropsch reaction. Journal of Energy Chemistry, 2016, 25, 895-906.	12.9	19
18	Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nature Communications, 2016, 7, 13058.	12.8	132

#	Article	IF	CITATIONS
19	Size-Dependent Activity and Selectivity of Fe/MCF-17 in the Catalytic Hydrogenation of Carbon Monoxide Using Fe(0) Nanoparticles as Precursors. ACS Catalysis, 2016, 6, 2496-2500.	11.2	38
20	CO-induced inversion of the layer sequence of a model CoCu catalyst. Surface Science, 2016, 648, 74-83.	1.9	30
21	Efficient selective hydrogenation of cinnamaldehyde over zeolite supported cobalt catalysts in water. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 283-292.	1.7	15
22	Influence of Chemical Composition on the Catalytic Activity of Small Bimetallic FeRu Nanoparticles for Fischer–Tropsch Syntheses. Catalysis Letters, 2015, 145, 373-379.	2.6	11
23	Catalytic hydrogenation of sulfur-containing nitrobenzene over Pd/C catalysts: In situ sulfidation of Pd/C for the preparation of PdxSy catalysts. Applied Catalysis A: General, 2015, 497, 17-21.	4.3	24
24	Ternary Cobalt–Copper–Niobium Catalysts for the Selective CO Hydrogenation to Higher Alcohols. ACS Catalysis, 2015, 5, 2929-2934.	11.2	64
25	Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: Role of CO oxygen species. Applied Surface Science, 2015, 324, 634-639.	6.1	35
26	Higher Alcohols through CO Hydrogenation over CoCu Catalysts: Influence of Precursor Activation. ACS Catalysis, 2014, 4, 2792-2800.	11.2	114
27	Carbon Nanotubes and Activated Carbons Supported Catalysts for Phenol in Situ Hydrogenation: Hydrophobic/Hydrophilic Effect. Industrial & Engineering Chemistry Research, 2014, 53, 2197-2203.	3.7	58
28	Selective Catalytic CO Hydrogenation to Short- and Long-Chain C2+ Alcohols. Catalysis Letters, 2013, 143, 936-941.	2.6	25
29	Tailoring supported palladium sulfide catalysts through H2-assisted sulfidation with H2S. Journal of Materials Chemistry A, 2013, 1, 12811.	10.3	55
30	Long-Chain Terminal Alcohols through Catalytic CO Hydrogenation. Journal of the American Chemical Society, 2013, 135, 7114-7117.	13.7	169
31	Reaction Performance of Hydrogen from Aqueous-Phase Reforming of Methanol or Ethanol in Hydrogenation of Phenol. Industrial & Engineering Chemistry Research, 2011, 50, 3139-3144.	3.7	32
32	Selectivity difference between hydrogenation of acetophenone over CNTs and ACs supported Pd catalysts. Journal of Molecular Catalysis A, 2011, 351, 70-75.	4.8	16
33	Cu-Pd/γ-Al ₂ O ₃ catalyzed one-pot synthesis of 2-methylquinoline from nitrobenzene and ethanol. Scientia Sinica Chimica, 2011, 41, 914-924.	0.4	0
34	Lanthanum-promoted Pd/Al2O3 catalysts for liquid phase inÂsitu hydrogenation of phenol to cyclohexanone. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100, 227.	1.7	12
35	Water-improved heterogeneous transfer hydrogenation using methanol as hydrogen donor over Pd-based catalyst. Applied Catalysis A: General, 2010, 375, 289-294.	4.3	55
36	Modulation of bonding between noble metal monomers and CNTs by B-, N-doping. Computational Materials Science, 2010, 48, 621-625.	3.0	14

3

#	Article	IF	Citations
37	In situ hydrogen from aqueous-methanol for nitroarene reduction and imine formation over an Au–Pd/Al2O3 catalyst. Chemical Communications, 2010, 46, 5918.	4.1	48
38	One-pot synthesis of N,N-dimethylaniline from nitrobenzene and methanol. New Journal of Chemistry, 2009, 33, 2051.	2.8	40
39	One pot synthesis of N-ethylaniline from nitrobenzene and ethanol. Science in China Series B: Chemistry, 2008, 51, 248-256.	0.8	12
40	A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater. Science in China Series B: Chemistry, 2008, 51, 1118-1126.	0.8	11
41	Aqueous system for the improved hydrogenation of phenol and its derivatives. Green Chemistry, 2008, 10, 939.	9.0	80
42	A novel liquid system of catalytic hydrogenation. Science in China Series B: Chemistry, 2007, 50, 746-753.	0.8	16
43	Transient Kinetic Study of Ethane and Ethylene Aromatization over Zinc-Exchanged HZSM-5 Catalyst. Industrial & Company: Engineering Chemistry Research, 0, , .	3.7	13
44	Terminal Amines, Nitriles, and Olefins through Catalytic CO Hydrogenation in the Presence of Ammonia. ACS Catalysis, 0, , 14977-14985.	11.2	1