Anna Villa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9302077/publications.pdf

Version: 2024-02-01

179 12,303 55 105
papers citations h-index g-index

182 182 182 10904 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Editing TÂcell repertoire by thymic epithelial cell-directed gene transfer abrogates risk of type 1 diabetes development. Molecular Therapy - Methods and Clinical Development, 2022, 25, 508-519.	1.8	1
2	Efficacy and safety of anti-CD45–saporin as conditioning agent for RAG deficiency. Journal of Allergy and Clinical Immunology, 2021, 147, 309-320.e6.	1.5	27
3	Gut Microbiota–Host Interactions in Inborn Errors of Immunity. International Journal of Molecular Sciences, 2021, 22, 1416.	1.8	18
4	Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyperâ€igM syndrome. EMBO Molecular Medicine, 2021, 13, e13545.	3.3	36
5	Autosomal recessive osteopetrosis: mechanisms and treatments. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	26
6	Thymic Epithelial Cell Alterations and Defective Thymopolesis Lead to Central and Peripheral Tolerance Perturbation in MHCII Deficiency. Frontiers in Immunology, 2021, 12, 669943.	2.2	8
7	Ablation of collagen VI leads to the release of platelets with altered function. Blood Advances, 2021, 5, 5150-5163.	2.5	5
8	Generation of 3 clones of induced pluripotent stem cells (iPSCs) from a patient affected by Autosomal Recessive Osteopetrosis due to mutations in TCIRG1 gene Stem Cell Research, 2020, 42, 101660.	0.3	6
9	Innovative Cell-Based Therapies and Conditioning to Cure RAG Deficiency. Frontiers in Immunology, 2020, 11, 607926.	2.2	11
10	Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis. Haematologica, 2020, 106, 74-86.	1.7	20
11	Artificial thymic organoids represent a reliable tool to study T-cell differentiation in patients with severe T-cell lymphopenia. Blood Advances, 2020, 4, 2611-2616.	2.5	65
12	Severe combined immune deficiency., 2020,, 153-205.		7
13	Chromosome Transplantation: A Possible Approach to Treat Human X-linked Disorders. Molecular Therapy - Methods and Clinical Development, 2020, 17, 369-377.	1.8	10
14	Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID. Molecular Therapy - Methods and Clinical Development, 2020, 17, 666-682.	1.8	37
15	Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn syndrome. Journal of Allergy and Clinical Immunology, 2020, 146, 1165-1179.e11.	1.5	13
16	Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood, 2020, 135, 610-619.	0.6	37
17	Pathobiologic Mechanisms of Neurodegeneration in Osteopetrosis Derived From Structural and Functional Analysis of 14 ClC-7 Mutants. Journal of Bone and Mineral Research, 2020, 36, 531-545.	3.1	16
18	Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis. Bone Reports, 2020, 12, 100242.	0.2	4

#	Article	IF	CITATIONS
19	Absence of Dipeptidyl Peptidase 3 Increases Oxidative Stress and Causes Bone Loss. Journal of Bone and Mineral Research, 2019, 34, 2133-2148.	3.1	32
20	The microbiome and immunodeficiencies: Lessons from rare diseases. Journal of Autoimmunity, 2019, 98, 132-148.	3.0	35
21	Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2019, 144, 825-838.	1.5	50
22	Gene Modification and Three-Dimensional Scaffolds as Novel Tools to Allow the Use of Postnatal Thymic Epithelial Cells for Thymus Regeneration Approaches. Stem Cells Translational Medicine, 2019, 8, 1107-1122.	1.6	31
23	Cysteine and hydrophobic residues in CDR3 serve as distinct T-cell self-reactivity indices. Journal of Allergy and Clinical Immunology, 2019, 144, 333-336.	1.5	31
24	The RANKL-RANK Axis: A Bone to Thymus Round Trip. Frontiers in Immunology, 2019, 10, 629.	2.2	50
25	Chromosome Transplantation: Correction of the Chronic Granulomatous Disease Defect in Mouse Induced Pluripotent Stem Cells. Stem Cells, 2019, 37, 876-887.	1.4	3
26	Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematology,the, 2019, 6, e239-e253.	2.2	166
27	The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the ClinicalADiagnosis of Inborn Errors of Immunity. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1763-1770.	2.0	381
28	One Disease, Many Genes: Implications for the Treatment of Osteopetroses. Frontiers in Endocrinology, 2019, 10, 85.	1.5	59
29	Mesenchymal Stromal Cell-Seeded Biomimetic Scaffolds as a Factory of Soluble RANKL in Rankl-Deficient Osteopetrosis. Stem Cells Translational Medicine, 2019, 8, 22-34.	1.6	34
30	<i><scp>RAG</scp></i> gene defects at the verge of immunodeficiency and immune dysregulation. Immunological Reviews, 2019, 287, 73-90.	2.8	44
31	Platelets in Wiskott-Aldrich syndrome: Victims or executioners?. Journal of Leukocyte Biology, 2018, 103, 577-590.	1.5	14
32	Autonomous role of Wiskott-Aldrich syndrome platelet deficiency in inducing autoimmunity and inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 1272-1284.	1.5	28
33	Neutrophils drive type I interferon production and autoantibodies in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2018, 142, 1605-1617.e4.	1.5	21
34	Genetics of Osteopetrosis. Current Osteoporosis Reports, 2018, 16, 13-25.	1.5	84
35	Efficacy of lentivirus-mediated gene therapy in an Omenn syndrome recombination-activating gene 2 mouse model is not hindered by inflammation and immune dysregulation. Journal of Allergy and Clinical Immunology, 2018, 142, 928-941.e8.	1.5	28
36	T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood, 2018, 132, 2362-2374.	0.6	99

#	Article	IF	CITATIONS
37	Mutations in the Neuroblastoma Amplified Sequence gene in a family affected by Acrofrontofacionasal Dysostosis type 1. Bone, 2018, 114, 125-136.	1.4	24
38	Hematopoietic stem cell transplantation corrects osteopetrosis in a child carrying a novel homozygous mutation in the FERMT3 gene. Bone, 2017, 97, 126-129.	1.4	17
39	Murine <i>Ranklâ^'/â^' </i> Mesenchymal Stromal Cells Display an Osteogenic Differentiation Defect Improved by a RANKL-Expressing Lentiviral Vector. Stem Cells, 2017, 35, 1365-1377.	1.4	18
40	Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Science Translational Medicine, 2017, 9, .	5.8	176
41	Synonymous Mutations Add a Layer of Complexity in the Diagnosis of Human Osteopetrosis. Journal of Bone and Mineral Research, 2017, 32, 99-105.	3.1	11
42	Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate. Frontiers in Bioengineering and Biotechnology, 2017, 5, 32.	2.0	53
43	In Vivo Chronic Stimulation Unveils Autoreactive Potential of Wiskott–Aldrich Syndrome Protein-Deficient B Cells. Frontiers in Immunology, 2017, 8, 490.	2.2	10
44	Combined T- and B-Cell Immunodeficiencies. , 2017, , 83-182.		3
45	Autoimmune Polyendocrinopathy–Candidiasis–Ectodermal Dystrophy (APECED). , 2016, , 436-443.		0
46	RAGs and BUGS: An alliance for autoimmunity. Gut Microbes, 2016, 7, 503-511.	4.3	11
47	Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic <i>RAG</i> defects. Journal of Experimental Medicine, 2016, 213, 355-375.	4.2	61
48	Buried in the Middle but Guilty: Intronic Mutations in the <i>TCIRG1</i> Gene Cause Human Autosomal Recessive Osteopetrosis. Journal of Bone and Mineral Research, 2015, 30, 1814-1821.	3.1	39
49	A pre-screening FISH-based method to detect CRISPR/Cas9 off-targets in mouse embryonic stem cells. Scientific Reports, 2015, 5, 12327.	1.6	20
50	IL-10 Critically Modulates B Cell Responsiveness in <i>Ranklâ^'/â^'</i> Mice. Journal of Immunology, 2015, 194, 4144-4153.	0.4	8
51	B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2015, 136, 692-702.e2.	1.5	41
52	Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports, 2015, 5, 558-568.	2.3	21
53	Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients. Journal of Clinical Investigation, 2015, 125, 3941-3951.	3.9	43
54	Chromosome transplantation as a novel approach for correcting complex genomic disorders. Oncotarget, 2015, 6, 35218-35230.	0.8	10

#	Article	IF	CITATIONS
55	Development of Central Nervous System Autoimmunity Is Impaired in the Absence of Wiskott-Aldrich Syndrome Protein. PLoS ONE, 2014, 9, e86942.	1.1	2
56	Severe Combined Immunodeficiencies. , 2014, , 87-141.		1
57	As Little as Needed: The Extraordinary Case of a Mild Recessive Osteopetrosis Owing to a Novel Splicing Hypomorphic Mutation in the <i>TCIRG1</i> Gene. Journal of Bone and Mineral Research, 2014, 29, 1646-1650.	3.1	22
58	Osteopetrosis mimicking juvenile myelomonocytic leukemia. Pediatrics International, 2014, 56, 779-782.	0.2	10
59	Rag Defects and Thymic Stroma: Lessons from Animal Models. Frontiers in Immunology, 2014, 5, 259.	2.2	21
60	<scp>W</scp> iskott– <scp>A</scp> ldrich syndrome protein deficiency in natural killer and dendritic cells affects antitumor immunity. European Journal of Immunology, 2014, 44, 1039-1045.	1.6	29
61	Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis. Bone, 2014, 59, 122-126.	1.4	26
62	Severe Combined Immunodeficiency in Serbia and Montenegro Between Years 1986 and 2010: A Single-Center Experience. Journal of Clinical Immunology, 2014, 34, 304-308.	2.0	14
63	Recombination-activating gene 1 (Rag1)–deficient mice with severe combined immunodeficiency treated with lentiviral gene therapy demonstrate autoimmune Omenn-like syndrome. Journal of Allergy and Clinical Immunology, 2014, 133, 1116-1123.	1.5	56
64	Reply. Journal of Allergy and Clinical Immunology, 2014, 134, 243-244.	1.5	3
65	Sphingosine-1-phosphate receptors control B-cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia, and multiple sclerosis. Journal of Allergy and Clinical Immunology, 2014, 134, 420-428.e15.	1.5	70
66	Wiskott–Aldrich Syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans. Journal of Autoimmunity, 2014, 50, 42-50.	3.0	72
67	Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nature Reviews Endocrinology, 2013, 9, 522-536.	4.3	457
68	Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Science, 2013, 341, 1233151.	6.0	900
69	Lentiviral gene transfer of TCIRG1 into peripheral blood CD34+ cells restores osteoclast function in infantile malignant osteopetrosis. Bone, 2013, 57, 1-9.	1.4	20
70	Homozygous stop mutation in the SNX10 gene in a consanguineous Iraqi boy with osteopetrosis and corpus callosum hypoplasia. European Journal of Medical Genetics, 2013, 56, 32-35.	0.7	30
71	Hypomorphic mutation in the RAG2 gene affects dendritic cell distribution and migration. Journal of Leukocyte Biology, 2013, 94, 1221-1230.	1.5	8
72	<i>SNX10</i> mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. Journal of Bone and Mineral Research, 2013, 28, 1041-1049.	3.1	59

#	Article	IF	CITATIONS
73	Preclinical Safety and Efficacy of Human CD34+ Cells Transduced With Lentiviral Vector for the Treatment of Wiskott-Aldrich Syndrome. Molecular Therapy, 2013, 21, 175-184.	3.7	72
74	Wiskott-Aldrich syndrome protein–mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. Journal of Experimental Medicine, 2013, 210, 355-374.	4.2	49
75	RANKL Cytokine: From Pioneer of the Osteoimmunology Era to Cure for a Rare Disease. Clinical and Developmental Immunology, 2013, 2013, 1-9.	3.3	30
76	Wiskott-Aldrich syndrome protein–mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. Journal of Cell Biology, 2013, 200, i6-i6.	2.3	0
77	Autoimmunity in Wiskott–Aldrich Syndrome: An Unsolved Enigma. Frontiers in Immunology, 2012, 3, 209.	2.2	110
78	Artemis C-terminal region facilitates V(D)J recombination through its interactions with DNA Ligase IV and DNA-PKcs. Journal of Experimental Medicine, 2012, 209, 955-963.	4.2	51
79	Correction of Murine Rag2 Severe Combined Immunodeficiency by Lentiviral Gene Therapy Using a Codon-optimized RAG2 Therapeutic Transgene. Molecular Therapy, 2012, 20, 1968-1980.	3.7	57
80	Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood, 2012, 119, 1428-1439.	0.6	107
81	Anti-CD3 $\hat{l}\mu$ mAb improves thymic architecture and prevents autoimmune manifestations in a mouse model of Omenn syndrome: therapeutic implications. Blood, 2012, 120, 1005-1014.	0.6	22
82	Osteopetrosis rescue upon RANKL administration to $\langle i \rangle$ Rankl $\langle i \rangle$ â°' $\langle i \rangle / \langle i \rangle$ â°' mice: A new therapy for human RANKL-dependent ARO. Journal of Bone and Mineral Research, 2012, 27, 2501-2510.	3.1	44
83	Gene therapy for primary immunodeficiencies: Part 2. Current Opinion in Immunology, 2012, 24, 585-591.	2.4	61
84	A Homozygous Contiguous Gene Deletion in Chromosome 16p13.3 Leads to Autosomal Recessive Osteopetrosis in a Jordanian Patient. Calcified Tissue International, 2012, 91, 250-254.	1.5	7
85	Impaired Osteoblastogenesis in a Murine Model of Dominant Osteogenesis Imperfecta: A New Target for Osteogenesis Imperfecta Pharmacological Therapy. Stem Cells, 2012, 30, 1465-1476.	1.4	59
86	RANK-dependent autosomal recessive osteopetrosis: Characterization of five new cases with novel mutations. Journal of Bone and Mineral Research, 2012, 27, 342-351.	3.1	66
87	Identification of the first deletion in the LRP5 gene in a patient with Autosomal Dominant Osteopetrosis type I. Bone, 2011, 49, 568-571.	1.4	27
88	Lentiviral-mediated gene therapy leads to improvement of B-cell functionality in a murine model of Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2011, 127, 1376-1384.e5.	1.5	34
89	Omenn syndrome does not live by V(D)J recombination alone. Current Opinion in Allergy and Clinical Immunology, 2011, 11, 525-531.	1.1	44
90	Severe Combined Immunodeficiency in Greek Children over a 20-Year Period. Journal of Clinical Immunology, 2011, 31, 778-783.	2.0	19

#	Article	IF	CITATIONS
91	Omenn Syndrome: inflammation and autoimmunity. Journal of Translational Medicine, 2011, 9, .	1.8	3
92	A new familial sclerosing bone dysplasia. Journal of Bone and Mineral Research, 2010, 25, 676-680.	3.1	6
93	Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Human Mutation, 2010, 31, E1071-E1080.	1.1	77
94	Homeostatic expansion of autoreactive immunoglobulin-secreting cells in the <i>Rag2</i> model of Omenn syndrome. Journal of Experimental Medicine, 2010, 207, 1525-1540.	4.2	66
95	Defect of regulatory T cells in patients with Omenn syndrome. Journal of Allergy and Clinical Immunology, 2010, 125, 209-216.	1.5	83
96	Revertant T lymphocytes in a patient with Wiskott-Aldrich syndrome: Analysis of function and distribution in lymphoid organs. Journal of Allergy and Clinical Immunology, 2010, 125, 439-448.e8.	1.5	31
97	Human Peripheral Lymphoid Tissues Contain Autoimmune Regulator-Expressing Dendritic Cells. American Journal of Pathology, 2010, 176, 1104-1112.	1.9	101
98	Analysis of mutations from SCID and Omenn syndrome patients reveals the central role of the Rag2 PHD domain in regulating V(D)J recombination. Journal of Clinical Investigation, 2010, 120, 1337-1344.	3.9	31
99	Evidence for Long-term Efficacy and Safety of Gene Therapy for Wiskott–Aldrich Syndrome in Preclinical Models. Molecular Therapy, 2009, 17, 1073-1082.	3.7	77
100	The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. Journal of Experimental Medicine, 2009, 206, 735-742.	4.2	53
101	A singleâ€enter experience in 20 patients with infantile malignant osteopetrosis. American Journal of Hematology, 2009, 84, 473-479.	2.0	83
102	Infantile Malignant, Autosomal Recessive Osteopetrosis: The Rich and The Poor. Calcified Tissue International, 2009, 84, 1-12.	1.5	142
103	Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nature Medicine, 2009, 15, 674-681.	15.2	172
104	Characterization of a Novel Alu-Alu Recombination-Mediated Genomic Deletion in the <i>TCIRG1</i> Gene in Five Osteopetrotic Patients. Journal of Bone and Mineral Research, 2009, 24, 162-167.	3.1	11
105	Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood, 2009, 113, 6288-6295.	0.6	207
106	ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency. Blood, 2009, 114, 3216-3226.	0.6	82
107	Early defects in human T-cell development severely affect distribution and maturation of thymic stromal cells: possible implications for the pathophysiology of Omenn syndrome. Blood, 2009, 114, 105-108.	0.6	135
108	The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. Journal of Cell Biology, 2009, 185, i1-i1.	2.3	0

#	Article	IF	CITATIONS
109	Prognostic potential of precise molecular diagnosis of Autosomal Recessive Osteopetrosis with respect to the outcome of bone marrow transplantation. Cytotechnology, 2008, 58, 57-62.	0.7	5
110	Genetically determined lymphopenia and autoimmune manifestations. Current Opinion in Immunology, 2008, 20, 318-324.	2.4	22
111	Human Osteoclast-Poor Osteopetrosis with Hypogammaglobulinemia due to TNFRSF11A (RANK) Mutations. American Journal of Human Genetics, 2008, 83, 64-76.	2.6	270
112	Omenn syndrome: Inflammation in leaky severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2008, 122, 1082-1086.	1.5	213
113	Of Omenn and mice. Trends in Immunology, 2008, 29, 133-140.	2.9	16
114	Lack of iNKT cells in patients with combined immune deficiency due to hypomorphic RAG mutations. Blood, 2008, 111, 271-274.	0.6	28
115	WASP regulates suppressor activity of human and murine CD4+CD25+FOXP3+ natural regulatory T cells. Journal of Experimental Medicine, 2007, 204, 369-380.	4.2	167
116	The Dissection of Human Autosomal Recessive Osteopetrosis Identifies an Osteoclast-Poor Form Due to RANKL Deficiency. Cell Cycle, 2007, 6, 3027-3033.	1.3	11
117	Molecular study of six families originating from the Middle-East and presenting with autosomal recessive osteopetrosis. European Journal of Medical Genetics, 2007, 50, 188-199.	0.7	28
118	Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nature Genetics, 2007, 39, 960-962.	9.4	346
119	GvHD-associated cytokine polymorphisms do not associate with Omenn syndrome rather than Tâ^'Bâ^' SCID in patients with defects in RAG genes. Clinical Immunology, 2007, 124, 165-169.	1.4	9
120	Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. Journal of Clinical Investigation, 2007, 117, 919-930.	3.9	204
121	A hypomorphic R229Q Rag2 mouse mutant recapitulates human Omenn syndrome. Journal of Clinical Investigation, 2007, 117, 1260-1269.	3.9	97
122	Tissue-specific sensitivity to AID expression in transgenic mouse models. Gene, 2006, 377, 150-158.	1.0	18
123	Osteopetroses and immunodeficiencies in humans. Current Opinion in Allergy and Clinical Immunology, 2006, 6, 421-427.	1.1	13
124	Mutations in OSTM1 (Grey Lethal) Define a Particularly Severe Form of Autosomal Recessive Osteopetrosis With Neural Involvement. Journal of Bone and Mineral Research, 2006, 21, 1098-1105.	3.1	97
125	RAG-dependent primary immunodeficiencies. Human Mutation, 2006, 27, 1174-1184.	1.1	122
126	Polymorphisms of the CLCN7 Gene Are Associated With BMD in Women. Journal of Bone and Mineral Research, 2005, 20, 1960-1967.	3.1	31

#	Article	IF	Citations
127	Ataxia-telangiectasia-mutated dependent phosphorylation of Artemis in response to DNA damage. Cancer Science, 2005, 96, 134-141.	1.7	45
128	Damaging-agent sensitivity of Artemis-deficient cell lines. European Journal of Immunology, 2005, 35, 1250-1256.	1.6	30
129	Vacuolar H+-ATPase d2 Subunit: Molecular Characterization, Developmental Regulation, and Localization to Specialized Proton Pumps in Kidney and Bone. Journal of the American Society of Nephrology: JASN, 2005, 16, 1245-1256.	3.0	59
130	Rescue of ATPa3-deficient murine malignant osteopetrosis by hematopoietic stem cell transplantation in utero. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14629-14634.	3.3	58
131	Omenn's syndrome occurring in patients without mutations in recombination activating genes. Clinical Immunology, 2005, 116, 246-256.	1.4	28
132	The genetics of dominant osteopetrosis. Drug Discovery Today Disease Mechanisms, 2005, 2, 503-509.	0.8	2
133	AIRE deficiency in thymus of 2 patients with Omenn syndrome. Journal of Clinical Investigation, 2005, 115, 728-732.	3.9	146
134	AIRE deficiency in thymus of 2 patients with Omenn syndrome. Journal of Clinical Investigation, 2005, 115, 728-732.	3.9	69
135	In Vitro Differentiation of CD14 Cells From Osteopetrotic Subjects: Contrasting Phenotypes With TCIRG1, CLCN7, and Attachment Defects. Journal of Bone and Mineral Research, 2004, 19, 1329-1338.	3.1	31
136	TCIRG1-dependent recessive osteopetrosis: Mutation analysis, functional identification of the splicing defects, andin vitro rescue by U1 snRNA. Human Mutation, 2004, 24, 225-235.	1.1	90
137	Chloride Channel CICN7 Mutations Are Responsible for Severe Recessive, Dominant, and Intermediate Osteopetrosis. Journal of Bone and Mineral Research, 2003, 18, 1740-1747.	3.1	202
138	Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nature Medicine, 2003, 9, 399-406.	15.2	245
139	Genotype-Phenotype Relationship in Human ATP6i-Dependent Autosomal Recessive Osteopetrosis. American Journal of Pathology, 2003, 162, 57-68.	1.9	97
140	Inhibition of BUB1 results in genomic instability and anchorage-independent growth of normal human fibroblasts. Cancer Research, 2003, 63, 2855-63.	0.4	47
141	Omenn syndrome in the context of other B cell-negative severe combined immunodeficiencies. Israel Medical Association Journal, 2002, 4, 218-21.	0.1	7
142	Recombinase activating gene enzymes of lymphocytes. Current Opinion in Hematology, 2001, 8, 41-46.	1.2	12
143	4 Primary immunodeficiency mutation databases. Advances in Genetics, 2001, 43, 103-188.	0.8	70
144	Identification of anti–herpes simplex virus antibody–producing B cells in a patient with an atypical RAG1 immunodeficiency. Blood, 2001, 98, 1464-1468.	0.6	19

#	Article	lF	CITATIONS
145	Recombination activating gene and its defects. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 491-495.	1.1	10
146	Prenatal diagnosis of RAG-deficient Omenn syndrome. , 2000, 20, 56-59.		13
147	The genetic and biochemical basis of Omenn syndrome. Immunological Reviews, 2000, 178, 64-74.	2.8	56
148	Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nature Genetics, 2000, 25, 343-346.	9.4	629
149	Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (lgM) syndrome. Cancer Gene Therapy, 2000, 7, 1299-1306.	2.2	49
150	Mutations in Conserved Regions of the Predicted RAG2 Kelch Repeats Block Initiation of V(D)J Recombination and Result in Primary Immunodeficiencies. Molecular and Cellular Biology, 2000, 20, 5653-5664.	1.1	58
151	Molecular Modeling of the Jak3 Kinase Domains and Structural Basis for Severe Combined Immunodeficiency. Clinical Immunology, 2000, 96, 108-118.	1.4	23
152	RAG MUTATIONS IN SEVERE COMBINED IMMUNODEFICIENCY AND OMENN'S SYNDROME. Immunology and Allergy Clinics of North America, 2000, 20, 129-142.	0.7	2
153	Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (IgM) syndrome. Cancer Gene Therapy, 2000, 7, 1299-1306.	2.2	13
154	Intrathymic Restriction and Peripheral Expansion of the T-Cell Repertoire in Omenn Syndrome. Blood, 1999, 94, 3468-3478.	0.6	79
155	RAG and RAG defects. Current Opinion in Immunology, 1999, 11, 435-442.	2.4	58
156	Omenn syndrome: a disorder of Rag1 and Rag2 genes. Journal of Clinical Immunology, 1999, 19, 87-97.	2.0	73
157	The RAG1/RAG2 Complex Constitutes a 3′ Flap Endonuclease. Molecular Cell, 1999, 4, 935-947.	4.5	73
158	Establishment and characterization of a new mammary adenocarcinoma cell line derived from MMTV neu transgenic mice. Breast Cancer Research and Treatment, 1998, 47, 171-180.	1.1	22
159	Severe combined immune deficiencies due to defects of the common ? chain-JAK3 signaling pathway. Seminars in Immunopathology, 1998, 19, 401-415.	4.0	18
160	Partial V(D)J Recombination Activity Leads to Omenn Syndrome. Cell, 1998, 93, 885-896.	13.5	429
161	Development of Autologous, Oligoclonal, Poorly Functioning T Lymphocytes in a Patient With Autosomal Recessive Severe Combined Immunodeficiency Caused by Defects of the Jak3 Tyrosine Kinase. Blood, 1998, 91, 949-955.	0.6	37
162	Development of Autologous, Oligoclonal, Poorly Functioning T Lymphocytes in a Patient With Autosomal Recessive Severe Combined Immunodeficiency Caused by Defects of the Jak3 Tyrosine Kinase. Blood, 1998, 91, 949-955.	0.6	1

#	Article	IF	CITATIONS
163	Structural and Functional Basis for JAK3-Deficient Severe Combined Immunodeficiency. Blood, 1997, 90, 3996-4003.	0.6	138
164	The Chromosome Localization and the HCF Repeats of the Human Host Cell Factor Gene (HCFC1) Are Conserved in the Mouse Homologue. Genomics, 1996, 32, 277-280.	1.3	15
165	The ZNF75 Zinc Finger Gene Subfamily: Isolation and Mapping of the Four Members in Humans and Great Apes. Genomics, 1996, 35, 312-320.	1.3	12
166	The Exon–Intron Structure of HumanLHX1 Gene. Biochemical and Biophysical Research Communications, 1996, 229, 494-497.	1.0	11
167	CD40Lbase: a database of CD40L gene mutations causing X-linked hyper-lgM syndrome. Trends in Immunology, 1996, 17, 511-516.	7.5	88
168	X–linked thrombocytopenia and Wiskott–Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nature Genetics, 1995, 9, 414-417.	9.4	274
169	Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature, 1995, 377, 65-68.	13.7	864
170	The Genomic Organization of the Human Transcription Factor 3 (TFE3) Gene. Genomics, 1995, 28, 491-494.	1.3	8
171	A new mutation (TTR Ala-47) in the transthyretin gene associated with hereditary amyloidosis. Human Mutation, 1994, 4, 61-64.	1.1	16
172	Human CD40L Gene Maps between DXS144E and DXS300 in Xq26. Genomics, 1994, 22, 249-251.	1.3	7
173	Preimplantation embryo sexing by polymerase chain reaction amplification of the sry gene on single mouse blastomeres. Genetic Analysis, Techniques and Applications, 1993, 10, 147-149.	1.5	6
174	ZNF75: Isolation of a cDNA Clone of the KRAB Zinc Finger Gene Subfamily Mapped in YACs 1 Mb Telomeric of HPRT. Genomics, 1993, 18, 223-229.	1.3	19
175	Early and multifocal tumors in breast, salivary, Harderian and epididymal tissues developed in MMTY-Neu transgenic mice. Cancer Letters, 1992, 64, 203-209.	3.2	111
176	Isolation of a zinc finger motif (ZNF75) mapping on chromosome Xq26. Genomics, 1992, 13, 1231-1236.	1.3	12
177	Fidelity of a YAC clone in the region of human MCF-2 gene. Biochemical and Biophysical Research Communications, 1991, 181, 877-883.	1.0	0
178	The rise of a microparadigm in oncology. Biology and Philosophy, 1989, 4, 57-67.	0.7	0
179	An analysis in human lymphomas of a JÎ \pm region involved in a C-MYCJÎ \pm translocation; Relationship with TCR alpha, beta, and gamma rearrangements. Biochemical and Biophysical Research Communications, 1988, 154, 550-558.	1,0	1