Eugenio A Carrera Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9302036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA extracellular traps as potential biomarker of chronic haemophilic synovitis and therapeutic perspective in patients treated with PRP: A pilot study. Haemophilia, 2022, 28, 351-361.	2.1	2
2	Monitoring Circulating CD207 ⁺ CD1a ⁺ Cells in Langerhans Cell Histiocytosis and Clinical Implications. Journal of Immunology, 2022, 209, 270-279.	0.8	1
3	A Heterotypic Tridimensional Model to Study the Interaction of Macrophages and Glioblastoma In Vitro. International Journal of Molecular Sciences, 2021, 22, 5105.	4.1	4
4	Highlighting the interplay of microRNAs from <i>Leishmania</i> parasites and infected-host cells. Parasitology, 2021, 148, 1434-1446.	1.5	6
5	Editorial: Viral Evasion Mechanisms of the Host Response. Frontiers in Cellular and Infection Microbiology, 2020, 10, 90.	3.9	0
6	Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165707.	3.8	24
7	GAS6 signaling tempers Th17 development in patients with multiple sclerosis and helminth infection. PLoS Pathogens, 2020, 16, e1009176.	4.7	7
8	Platelets Promote Macrophage Polarization toward Pro-inflammatory Phenotype and Increase Survival of Septic Mice. Cell Reports, 2019, 28, 896-908.e5.	6.4	100
9	Junin Virus Triggers Macrophage Activation and Modulates Polarization According to Viral Strain Pathogenicity. Frontiers in Immunology, 2019, 10, 2499.	4.8	18
10	Pro-inflammatory monocyte profile in patients with major depressive disorder and suicide behaviour and how ketamine induces anti-inflammatory M2 macrophages by NMDAR and mTOR. EBioMedicine, 2019, 50, 290-305.	6.1	87
11	Leptospira species promote a proâ€inflammatory phenotype in human neutrophils. Cellular Microbiology, 2019, 21, e12990.	2.1	10
12	Monocyte glycolysis determines CD8+ T cell functionality in human Chagas disease. JCI Insight, 2019, 4,	5.0	11
13	Macrophages and Galectin 3 Control Bacterial Burden in Acute and Subacute Murine Leptospirosis That Determines Chronic Kidney Fibrosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 384.	3.9	25
14	NLRP3 Inflammasome and Caspase-1/11 Pathway Orchestrate Different Outcomes in the Host Protection Against Trypanosoma cruzi Acute Infection. Frontiers in Immunology, 2018, 9, 913.	4.8	29
15	CD207+CD1a+ cells circulate in pediatric patients with active Langerhans cell histiocytosis. Blood, 2017, 130, 1898-1902.	1.4	24
16	The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science, 2016, 352, 99-103.	12.6	67
17	AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity. ELife, 2016, 5, .	6.0	54
18	MERTK as negative regulator of human T cell activation. Journal of Leukocyte Biology, 2015, 97, 751-760.	3.3	99

EUGENIO A CARRERA SILVA

#	Article	IF	CITATIONS
19	TAM Receptor Signaling in Immune Homeostasis. Annual Review of Immunology, 2015, 33, 355-391.	21.8	354
20	Myeloidâ€derived suppressor cells are key players in the resolution of inflammation during a model of acute infection. European Journal of Immunology, 2014, 44, 184-194.	2.9	67
21	Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFα in glioblastoma. Science Signaling, 2014, 7, ra75.	3.6	47
22	T Cell-Derived Protein S Engages TAM Receptor Signaling in Dendritic Cells to Control the Magnitude of the Immune Response. Immunity, 2013, 39, 160-170.	14.3	154
23	Trypanosoma cruzi, the causative agent of Chagas disease, modulates interleukin-6-induced STAT3 phosphorylation via gp130 cleavage in different host cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 485-494.	3.8	21
24	Nonimmune Cells Contribute to Crosstalk between Immune Cells and Inflammatory Mediators in the Innate Response to <i>Trypanosoma cruzi</i> Infection. Journal of Parasitology Research, 2012, 2012, 1-13.	1.2	18
25	TAMing Colitis and Colitis-Associated Colon Cancer. Inflammatory Bowel Diseases, 2012, 18, S13-S14.	1.9	0
26	Toll-like receptor-2 and interleukin-6 mediate cardiomyocyte protection from apoptosis during Trypanosoma cruzi murine infection. Medical Microbiology and Immunology, 2012, 201, 145-155.	4.8	43
27	T cell derived Protein S inhibits the activation of Dendritic cells through the TAM receptors Axl and Mer. Inflammatory Bowel Diseases, 2011, 17, S10.	1.9	0
28	Trypanosoma cruzi antigen immunization induces a higher B cell survival in BALB/c mice, a susceptible strain, compared to C57BL/6 B lymphocytes, a resistant strain to cardiac autoimmunity. Medical Microbiology and Immunology, 2011, 200, 209-218.	4.8	9
29	Induction of NADPH oxidase activity and reactive oxygen species production by a single Trypanosoma cruzi antigen. International Journal for Parasitology, 2010, 40, 1531-1538.	3.1	25
30	Importance of TLR2 on Hepatic Immune and Non-Immune Cells to Attenuate the Strong Inflammatory Liver Response During Trypanosoma cruzi Acute Infection. PLoS Neglected Tropical Diseases, 2010, 4, e863.	3.0	26
31	TLR2, TLR4 and TLR9 are differentially modulated in liver lethally injured from BALB/c and C57BL/6 mice during Trypanosoma cruzi acute infection. Molecular Immunology, 2008, 45, 3580-3588.	2.2	28
32	Spleen B cells from BALB/c are more prone to activation than spleen B cells from C57BL/6 mice during a secondary immune response to cruzipain. International Immunology, 2007, 19, 1395-1402.	4.0	28
33	Immunisation with a major Trypanosoma cruzi antigen promotes pro-inflammatory cytokines, nitric oxide production and increases TLR2 expression. International Journal for Parasitology, 2007, 37, 1243-1254.	3.1	31
34	A Thermostable α-Galactosidase from Lactobacillus fermentum CRL722: Genetic Characterization and Main Properties. Current Microbiology, 2006, 53, 374-378.	2.2	43